Skip to main content
Log in

Targeted genomic disruption of H-ras and N-ras has no effect on early renal changes after unilateral ureteral ligation

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

To assess the contribution of two different Ras monomeric GTPases isoforms H- and N-Ras in the early changes associated to obstructive nephropathy induced by unilateral ureteral obstruction (UUO).

Methods

UUO was performed in N-ras (N-ras −/−) and H-ras (H-ras −/− ) knock-out mice and control (H-ras +/+ /N-ras +/+) mice of C57Bl/6 background. Fibronectin, α-smooth muscle actin, cleaved caspase-3, ki-67, Ras-GTP, pERK, and pAkt expression was analyzed by western blot and/or immunohistochemistry. Ras isoforms activation and caspase activity were determined by both western blot and ELISA.

Results

Three days after UUO, obstructed (O) kidneys of H-ras −/−, N-ras −/− and H-ras +/+ /N-ras +/+ mice showed no significant differences in activated total ras, pERK1/2, pAkt, total Akt levels, fibronectin, α-SMA expression, cell proliferation, and activated caspase-3. The morphological alterations in the O kidneys, revealed by histological and immunohistochemical studies, were also similar in H-ras −/−, N-ras −/−, and H-ras +/+ /N-ras +/+ mice.

Conclusions

These data suggest that the activation of H-ras and N-ras isoforms does not play a major role in the early renal damage induced by UUO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283(5):F861–F875

    PubMed  Google Scholar 

  2. Bascands JL, Schanstra JP (2005) Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 68(3):925–937. doi:10.1111/j.1523-1755.2005.00486.x

    Article  CAS  PubMed  Google Scholar 

  3. Santos E, Nebreda AR (1989) Structural and functional properties of ras proteins. FASEB J 3(10):2151–2163

    CAS  PubMed  Google Scholar 

  4. Leon J, Guerrero I, Pellicer A (1987) Differential expression of the ras gene family in mice. Mol Cell Biol 7(4):1535–1540

    CAS  PubMed  Google Scholar 

  5. Esteban LM, Vicario-Abejón C, Fernández-Salguero P et al (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21(5):1444–1452. doi:10.1128/MCB.21.5.1444-1452.2001

    Article  CAS  PubMed  Google Scholar 

  6. Koera K, Nakamura K, Nakao K et al (1997) K-ras is essential for the development of the mouse embryo. Oncogene 15(10):1151–1159

    Article  CAS  PubMed  Google Scholar 

  7. Dhanasekaran N, Premkumar Reddy E (1998) Signaling by dual specificity kinases. Oncogene 17(17):1447–1455. doi:10.1038/sj.onc.1202251

    Article  CAS  PubMed  Google Scholar 

  8. Marshall CJ (1994) MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4(1):82–89. doi:10.1016/0959-437X(94)90095-7

    Article  CAS  PubMed  Google Scholar 

  9. Malumbres M, Pellicer A (1998) RAS pathways to cell cycle control and cell transformation. Front Biosci 6(3):d887–d912

    Google Scholar 

  10. Rodríguez-Peña AB, Grande MT, Eleno N et al (2008) Activation of Erk1/2 and Akt following unilateral ureteral obstruction. Kidney Int 74(2):196–209. doi:10.1038/ki.2008.160

    Article  PubMed  Google Scholar 

  11. Rodriguez-Peña AB, Santos E, Arevalo M et al (2005) Activation of small GTPase Ras and renal fibrosis. J Nephrol 18(3):341–349

    PubMed  Google Scholar 

  12. National Research Council (NRC) (1996) Commission on life Sciences, Institute of Laboratory Animal Resources, Guide for the care and use of laboratory animals, National Academy Press, Washington

  13. Bani-Hani AH, Campbell MT, Meldrum DR et al (2008) Cytokines in epithelial-mesenchymal transition: a new insight into obstructive nephropathy. J Urol 180(2):461–468. doi:10.1016/j.juro.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  14. Sharpe CC, Dockrell ME, Noor MI et al (2000) Role of Ras isoforms in the stimulated proliferation of human renal fibroblasts in primary culture. J Am Soc Nephrol 11(9):1600–1606

    CAS  PubMed  Google Scholar 

  15. Pat B, Yang T, Kong C et al (2005) Activation of ERK in renal fibrosis after unilateral ureteral obstruction: modulation by antioxidants. Kidney Int 67(3):931–943. doi:10.1111/j.1523-1755.2005.00157.x

    Article  CAS  PubMed  Google Scholar 

  16. Masaki T, Foti R, Hill PA et al (2003) Activation of ERK pathway precedes tubular proliferation in the obstructed rat kidney. Kidney Int 63(4):1256–1264. doi:10.1046/j.1523-1755.2003.00874.x

    Article  CAS  PubMed  Google Scholar 

  17. Winbanks CE, Grimwood L, Gasser A et al (2007) Role of the phosphatidylinositol 3-kinase and mTOR pathways in the regulation of renal fibroblast function and differentiation. Int J Biochem Cell Biol 39(1):206–219. doi:10.1016/j.biocel.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  18. Truong LD, Choi YJ, Tsao CC et al (2001) Renal cell apoptosis in chronic obstructive uropathy: the roles of caspases. Kidney Int 60(3):924–934. doi:10.1046/j.1523-1755.2001.060003924.x

    Article  CAS  PubMed  Google Scholar 

  19. Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9(6):667–676. doi:10.1023/B:APPT.0000045801.15585.dd

    Article  CAS  PubMed  Google Scholar 

  20. Sinha D, Bannergee S, Schwartz JH et al (2004) Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. J Biol Chem 19:279(12):10962–10972

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ms. Angustias Pérez for his invaluable skilful technical assistance in histology procedures. This study was supported by grants from Spanish Ministerio de Ciencia y Tecnología (BFU2004-00285/BFI and SAF 2003-04177), Instituto de Salud Carlos III (RD06/0016/013: RedinRen) and Junta de Castilla y León (SA 001/C05).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. López-Novoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grande, M.T., Arévalo, M., Núñez, A. et al. Targeted genomic disruption of H-ras and N-ras has no effect on early renal changes after unilateral ureteral ligation. World J Urol 27, 787–797 (2009). https://doi.org/10.1007/s00345-009-0399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-009-0399-8

Keywords

Navigation