Skip to main content
Log in

Upregulation of mRNA expression of MCP-1 by TGF-β1 in fibroblast cells from Peyronie’s disease

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Peyronie’s disease (PD) is a localized connective tissue disorder of the penile tunica albuginea (TA) with a still obscure etiopathology. Recent studies from our laboratory have demonstrated differences in Smad3 and Smad4 gene expression of PD-fibroblasts and non-PD-fibroblasts after stimulation with recombinant TGF-β1 for 1 h. In the present study, we investigated gene expression of Smad2–Smad4 and Smad7 up to 6 h after stimulation with TGF-β1. As a positive control, MCP-1 gene expression was monitored.

Materials and methods

Cells with fibroblast characteristics were isolated from seven PD plaques and three TA controls. The cells were incubated with recombinant TGF-β1 for 2–6 h and expression of Smad2–Smad4, Smad7, and monocyte chemotactic protein-1 (MCP-1) was determined by quantitative real-time PCR.

Results

TGF-β1 treatment resulted in a statistically significant up-regulation of Smad7 and MCP-1 gene expression. Smad7 expression was increased after 2 h (P < 0.001) and was still high after 4 h (P < 0.05). No significant differences between fibroblasts from PD-patients compared to non-PD-patients were observed. MCP-1 peaked after 4 h (P < 0.001) and remained high up to 6 h (P < 0.01). PD-fibroblasts revealed a significantly increased MCP-1 gene expression compared to non-PD-fibroblasts (P = 0.013) after 2 h and remained significantly different also after 6 h (P = 0.038). Gene expression of Smad2–Smad4 did not change during stimulation with TGF-β1.

Conclusion

In conclusion, analysis of MCP-1 expression might be a useful marker for Peyronie’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sasso F, Gulino G, Falabella R, D’Addessi A, Sacco E, D’Onofrio A, Bassi PF (2007) Peyronie’s disease: lights and shadows. Urol Int 78:1–9

    Article  PubMed  CAS  Google Scholar 

  2. Sommer F, Schwarzer U, Wassmer G, Bloch W, Braun M, Klotz T, Engelmann U (2002) Epidemiology of Peyronie’s disease. Int J Impot Res 14:379–383

    Article  PubMed  CAS  Google Scholar 

  3. Levine LA (2004) Peyronie’s Disease: what have we learned? J Sex Med 1:1–11

    Article  Google Scholar 

  4. Zargooshi J (2004) Trauma as the cause of Peyronie’s disease: penile fracture as a model of trauma. J Urol 172:186–188

    Article  PubMed  Google Scholar 

  5. Brock G, Hsu GL, Nunes L, von Heyden B, Lue TF (1997) The anatomy of the tunica albuginea in the normal penis and Peyronie’s disease. J Urol 157:276–281

    Article  PubMed  CAS  Google Scholar 

  6. El-Sakka AI, Hassoba HM, Pillarisetty RJ, Dahiya R, Lue TF (1997) Peyronie’s disease is associated with an increase in transforming growth factor-beta protein expression. J Urol 158:1391–1394

    Article  PubMed  CAS  Google Scholar 

  7. Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  CAS  Google Scholar 

  8. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    Article  PubMed  CAS  Google Scholar 

  9. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFβ activation. J Cell Sci 116(Pt2):217–224

    Article  PubMed  CAS  Google Scholar 

  10. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  11. El-Sakka AI, Hassan MU, Nunes L, Bhatnagar RS, Yen TS, Lue TF (1998) Histological and ultrastructural alterations in an animal model of Peyronie’s disease. Br J Urol 81:445–452

    PubMed  CAS  Google Scholar 

  12. Davila HH, Ferrini MG, Rajfer J, Gonzalez-Cadavid NF (2003) Fibrin as an inducer of fibrosis in the tunica albuginea of the rat: a new animal model of Peyronie’s disease. BJU Int 91:830–838

    Article  PubMed  CAS  Google Scholar 

  13. El-Sakka AI, Selph CA, Yen TS, Dahiya R, Lue TF (1998) The effect of surgical trauma on rat tunica albuginea. J Urol 159:1700–1707

    Article  PubMed  CAS  Google Scholar 

  14. Mulhall JP, Anderson MS, Lubrano T, Shankey TV (2004) Peyronie’s disease cell culture models: phenotypic, genotypic and functional analyses. Int J Impot Res 14:397–405

    Article  Google Scholar 

  15. Haag SM, Hauck EW, Szardening-Kirchner C, Diemer T, Cha ES, Weidner W, Eickelberg O (2007) Alterations in the transforming growth factor (TGF)-beta pathway as a potential factor in the pathogenesis of Peyronie’s disease. Eur Urol 51:255–261

    Article  PubMed  CAS  Google Scholar 

  16. Essed E, Schroeder FH (1985) New surgical treatment for Peyronie disease. Urology 25:582–587

    Article  PubMed  CAS  Google Scholar 

  17. Hauck EW, Bschleifer T, Diemer T, Manning M, Schroeder-Printzen I, Weidner W (2002) Long-term results of Essed-Schroeder plication by the use of non-absorbable Goretex sutures for correcting congenital penile curvature. Int J Impot Res 14:146–150

    Article  PubMed  CAS  Google Scholar 

  18. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):R34

    Article  Google Scholar 

  19. Nakao A, Afrakhte M, Moren A, Nkayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635

    Article  PubMed  CAS  Google Scholar 

  20. Afrakhte M, Moren A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin CH, Heldin NE, ten Dijke P (1998) Induction of inhibitory Smad6 and Smad7 mRNA by TGF-beta family members. Biochem Biophys Res Commun 249:505–511

    Article  PubMed  CAS  Google Scholar 

  21. Denissova NG, Liu F (2004) Repression of endogenous Smad7 by Ski. J Biol Chem 279:28143–28148

    Article  PubMed  CAS  Google Scholar 

  22. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  PubMed  CAS  Google Scholar 

  23. Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19:1745–1754

    Article  PubMed  CAS  Google Scholar 

  24. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  PubMed  CAS  Google Scholar 

  25. Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Gauldie J (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173:2099–2108

    PubMed  CAS  Google Scholar 

  26. Ashcroft GS, Yang X, Glick AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C, Roberts AB (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat Cell Biol 1:260–266

    Article  PubMed  CAS  Google Scholar 

  27. Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM (2003) Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 125:178–191

    Article  PubMed  CAS  Google Scholar 

  28. Saika S, Ikeda K, Yamanaka O, Miyamoto T, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Nakajima Y, Kao WW, Flanders KC, Roberts AB (2005) Expression of Smad7 in mouse eyes accelerates healing of corneal tissue after exposure to alkali. Am J Pathol 166:1405–1418

    PubMed  CAS  Google Scholar 

  29. Yoshimura H, Nakahama K, Safronova O, Tanaka N, Muneta T, Morita I (2006) Transforming growth actor-beta stimulates IL-1beta-induced monocyte chemoattractant protein-1 expression in human synovial cells via the ERK/AP-1 pathway. Inflamm Res 55:543–549

    Article  PubMed  CAS  Google Scholar 

  30. Lin CS, Lin G, Wang Z, Maddah SA, Lue TF (2002) Upregulation of monocyte chemoattractant protein 1 and effects of transforming growth factor-beta 1 in Peyronie’s disease. Biochem Biophys Res Commun 295:1014–1019

    Article  PubMed  CAS  Google Scholar 

  31. Lin GT, Wang Z, Liu BC, Lue TF, Lin CS (2005) Identification of potential biomarkers of Peyronie’s disease. Asian J Androl 7:237–243

    Article  PubMed  CAS  Google Scholar 

  32. Ma J, Wang Q, Fei T, Jackie Han JD, Chen YG (2007) MCP-1 mediates TGF-β-induced angiogenesis by stimulating vascular smooth muscle cell migration. Blood 109:987–994

    Article  PubMed  CAS  Google Scholar 

  33. Wang Z, Lin G, Lue TF, Lin CS (2003) Wogonin suppresses cellular proliferation and expression of monocyte chemoattractant protein 1 in Peyronie’s plaque-derived cells. BJU Int 92:753–757

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Konrad.

Additional information

C. Szardening-Kirchner and L. Konrad have contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szardening-Kirchner, C., Konrad, L., Hauck, E.W. et al. Upregulation of mRNA expression of MCP-1 by TGF-β1 in fibroblast cells from Peyronie’s disease. World J Urol 27, 123–130 (2009). https://doi.org/10.1007/s00345-008-0320-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-008-0320-x

Keywords

Navigation