Skip to main content

Central nervous system control of ejaculation

Abstract

An overview is given of the regions in the spinal cord that are active during ejaculation. Motoneurons involved are the preganglionic sympathetic motoneurons in the upper lumbar spinal cord and the motoneurons in the nucleus of Onuf, located in the upper sacral cord. The first group is involved in the so-called emission phase of ejaculation, the last group in the expulsion phase. Both groups receive afferents from premotor interneurons in the so-called intermediomedial cell groups located at about the same level as the motoneurons themselves. A concept is put forward in which these premotor cell groups represent the central spinal pattern generators for ejaculation, one for the emission phase and one for the expulsion phase. Clinical observations in patients suffering from transection of the spinal cord indicate that the ejaculation motoneurons as well as their spinal central pattern generators are under strong influence of descending pathways originating in supraspinal parts of the brain. The various pathways possibly involved in ejaculation control are reviewed. Finally, the results of the brain activation of a PET-scan study in human males, ejaculating after penile stimulation by their female partner are discussed. Especially the ventral tegmental area and the cerebellum seem to be activated during ejaculation, while the amygdala region is deactivated. Apparently, a general lack of fear is necessary for ejaculation to occur.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ando M, Kihara K, Sato K, Sato T, Oshima H (1993) Regulation of the bladder neck closure by lumbar splanchnic nerves at ejaculation in the dog. Neurourol Urodyn 12:91–98

    CAS  PubMed  Google Scholar 

  2. 2.

    Arnow BA, Desmond JE, Banner LL, Glover GH, Solomon A, Polan ML et al. (2002) Brain activation and sexual arousal in healthy, heterosexual males. Brain 125:1014–1023

    PubMed  Google Scholar 

  3. 3.

    Baum MJ, Everitt BJ (1992) Increased expression of c-fos in the medial preoptic area after mating in male rats: role of afferent inputs from the medial amygdala and central tegmental field. Neuroscience 50:627–646

    CAS  PubMed  Google Scholar 

  4. 4.

    Bartels A, Zeki S (2000) The neural basis of romantic love. Neuroreport 11:3829–3834

    CAS  PubMed  Google Scholar 

  5. 5.

    Blok BFM, Willemsen ATM, Holstege G (1997) A PET study on the control of micturition and urine storage in humans. Brain 120:111–121

    PubMed  Google Scholar 

  6. 6.

    Blok BFM, Sturms LM, Holstege G (1998) Brain activation during micturition in women. Brain 121:2033–2042

    PubMed  Google Scholar 

  7. 7.

    Bocher M, Chisin R, Parag Y, Freedman N, Meir Weil Y, Lester H et al. (2001) Cerebral activation associated with sexual arousal in response to a pornographic clip: a 15O-H2O PET study in heterosexual men. NeuroImage 14:105–117

    CAS  PubMed  Google Scholar 

  8. 8.

    Brackett N, Edwards DA (1984) Medial preoptic connections with the midbrain tegmentum are essential for male sexual behavior. Physiol Behav 32:79–84

    CAS  PubMed  Google Scholar 

  9. 9.

    Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD et al. (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    CAS  PubMed  Google Scholar 

  10. 10.

    Carro-Juarez M, Cruz SL, Rodriguez-Manzo G (2003) Evidence for the involvement of a spinal pattern generator in the control of the genital motor pattern of ejaculation. Brain Res 975:222–228

    CAS  PubMed  Google Scholar 

  11. 11.

    Chalmers D, Swash M (1987) Selective vulnerability of urinary Onuf motoneurons in Shy-Dräger syndrome. J Neurol 234:259–260

    CAS  PubMed  Google Scholar 

  12. 12.

    Chapelle PA, Durand J, Lacert P (1980) Penile erection following complete spinal cord injury in man. Br J Urol 52:216–219

    CAS  PubMed  Google Scholar 

  13. 13.

    Chen KK, Chan SH, Chang LS, Chan JY (1997) Participation of paraventricular nucleus of hypothalamus in central regulation of penile erection in the rat. J Urol 158:238–244

    CAS  PubMed  Google Scholar 

  14. 14.

    Coolen LM, Peters HJ, Veening JG (1996) Fos immunoreactivity in the rat brain following consummatory elements of sexual behavior: a sex comparison. Brain Res 738:67–82

    PubMed  Google Scholar 

  15. 15.

    Dekker JJ, Lawrence DG, Kuypers HGJM (1973) The location of longitudinally running dendrites in the ventral horn of cat spinal cord. Brain Res 51:319–325

    CAS  PubMed  Google Scholar 

  16. 16.

    Heeb MM, Yahr P (1996) C-fos immunoreactivity in the sexually dimorphic area of the hypothalamus and related brain regions of male gerbils after exposure to sex-related stimuli or performance of specific sexual behaviors. Neuroscience 72:1049–1071

    CAS  PubMed  Google Scholar 

  17. 17.

    Heeb MM, Yahr P (2000) Cell-body lesions of the posterodorsal preoptic nucleus or posterodorsal medial amygdala, but not the parvicellar subparafascicular thalamus, disrupt mating in male gerbils. Physiol Behav 68:317–331

    CAS  PubMed  Google Scholar 

  18. 18.

    Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    CAS  PubMed  Google Scholar 

  19. 19.

    Holstege G (1991) Descending motor pathways and the spinal motor system. Limbic and non-limbic components. In: Holstege G (ed) Role of the forebrain in sensation and behavior. Progr Brain Res 87:307–421

    CAS  Google Scholar 

  20. 20.

    Holstege G, Kuypers HGJM (1982) The anatomy of brain stem pathways to the spinal cord in cat. A labeled amino acid tracing study. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Progr Brain Res 57:145–175

    CAS  Google Scholar 

  21. 21.

    Holstege G, Tan J (1987) Supraspinal control of motoneurons innervating the striated muscles of the pelvic floor including urethral and anal sphincters in the cat. Brain 110:1323–1344

    PubMed  Google Scholar 

  22. 22.

    Holstege G, Kuypers HGJM, Boer RC (1979) Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res 171:329–333

    CAS  PubMed  Google Scholar 

  23. 23.

    Holstege G, Griffiths D, De Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    CAS  PubMed  Google Scholar 

  24. 24.

    Holstege G, Georgiadis JR, Paans AMJ, Meiners LC, VanderGraaf FHCE, Reinders AATS (2003) Neural correlates of human male ejaculation. J Neurosci 23:9185–9193

    CAS  PubMed  Google Scholar 

  25. 25.

    Iwatsubo T, Kuzuhara S, Kanemitsu A, Shimada H, Toyokura Y (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40:309–312

    CAS  PubMed  Google Scholar 

  26. 26.

    Karama S, Lecours AR, Leroux JM, Bourgouin P, Beaudoin G, Joubert S et al. (2002) Areas of brain activation in males and females during viewing of erotic film excerpts. Hum Brain Mapp 16:1–16

    PubMed  Google Scholar 

  27. 27.

    Kiehn , Kjaerulff (1998) Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann N Y Acad Sci 860:110–29

    CAS  PubMed  Google Scholar 

  28. 28.

    Mallory B, Steers WD, De Groat WC (1989) Electrophysiological study of micturition reflexes in rats. Am J Physiol 257:R410–421

    CAS  PubMed  Google Scholar 

  29. 29.

    Mannen T, Iwata M, Toyokura Y, Nagashima K (1977) Preservation of a certain motoneurone group of the sacral cord in a myotrophic lateral sclerosis: its clinical significance. J Neurol Neurosurg Psychol 40:464–469

    CAS  Google Scholar 

  30. 30.

    Mannen T, Iwata M, Toyokura Y, Nagashima K (1982) The Onuf’s nucleus and the external anal sphincter muscles in amyotrophic lateral sclerosis and Shy-Drager Syndrome. Acta Neurophathol 58:255–260

    CAS  Google Scholar 

  31. 31.

    Marson L (2004) Lesions of the periaqueductal gray block the medial preoptic area-induced activation of the urethrogenital reflex in male rats. Neurosci Lett 367:278–282

    CAS  PubMed  Google Scholar 

  32. 32.

    Marson L, Foley KA (2004) Identification of neural pathways involved in genital reflexes in the female: a combined anterograde and retrograde tracing study. Neuroscience 127:723–736

    CAS  PubMed  Google Scholar 

  33. 33.

    Nacimiento W, Topper R, Fischer A, Mobius E, Oestreicher AB, Gispen WH, Nacimiento AC, Noth J, Kreutzberg GW (1993) B-50 (GAP-43) in Onuf’s nucleus of the adult cat. Brain Res 613:80–87

    CAS  PubMed  Google Scholar 

  34. 34.

    Nadelhaft I, Vera PL (2001) Separate urinary bladder and external urethral sphincter neurons in the central nervous system of the rat: simultaneous labeling with two immunohistochemically distinguishable pseudorabies viruses. Brain Res 903:33–44

    CAS  PubMed  Google Scholar 

  35. 35.

    Onufrowicz B (1899) Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J Nerv Mental Dis 26:498–504

    Google Scholar 

  36. 36.

    Redouté J, Stoleru S, Gregoire MC, Costes N, Cinotti L, Lavenne F et al. (2000) Brain processing of visual sexual stimuli in human males. Hum Brain Mapp 11:162–177

    PubMed  Google Scholar 

  37. 37.

    Romanes GJ (1951) The motor cell columns of the lumbosacral spinal cord of the cat. J Comp Neurol 94:313–363

    CAS  PubMed  Google Scholar 

  38. 38.

    Sato M, Mizuno N, Konishi A (1978) Localization of motoneurons innervating perineal muscles: a HRP study in cat. Brain Res 140:149–154

    CAS  PubMed  Google Scholar 

  39. 39.

    Schrøder HD (1981) Onuf’s nucleus X: a morphological study of a human spinal nucleus. Anat Embryol 162:443–453

    PubMed  Google Scholar 

  40. 40.

    Sell LA, Morris J, Bearn J, Frackowiak RS, Friston KJ, Dolan RJ (1999) Activation of reward circuitry in human opiate addicts. Eur J Neurosci 11:1042–1048

    CAS  PubMed  Google Scholar 

  41. 41.

    Shafik A (1999) Physioanatomic entirety of external anal sphincter with bulbocavernosus muscle. Arch Androl 42:45–54

    CAS  PubMed  Google Scholar 

  42. 42.

    Stoleru S, Gregoire MC, Gerard D, Decety J, Lafarge E, Cinotti L et al. (1999) Neuroanatomical correlates of visually evoked sexual arousal in human males. Arch Sex Behav 28:1–21.

    CAS  PubMed  Google Scholar 

  43. 43.

    Tang Y, Rampin O, Giuliano F, Ugolini G (1999) Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: retrograde transneuronal tracing with rabies virus. J Comp Neurol 414:167–192

    CAS  PubMed  Google Scholar 

  44. 44.

    Vera PL Nadelhaft I (2000) Anatomical evidence for two spinal ‘afferent-interneuron-efferent’ reflex pathways involved in micturition in the rat: a ‘pelvic nerve’ reflex pathway and a ‘sacrolumbar intersegmental’ reflex pathway. Brain Res 883:107–118

    CAS  PubMed  Google Scholar 

  45. 45.

    Vizzard MA, Brisson M, DeGroat WC (2000) Transneuronal labeling of neurons in the adult rat central nervous system following inoculation of pseudorabies virus into the colon. Cell Tissue Res 299:9–26

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gert Holstege.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holstege, G. Central nervous system control of ejaculation. World J Urol 23, 109–114 (2005). https://doi.org/10.1007/s00345-004-0484-y

Download citation

Keywords

  • Central pattern generator for ejaculation
  • Emission phase of ejaculation
  • Expulsion phase of ejaculation
  • Cerebellum
  • Amygdala