Skip to main content

Advertisement

Log in

Molecular and genetic prognostic factors of prostate cancer

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Prostate cancer is the most commonly diagnosed cancer in Western males, responsible for 3% of all deaths in men over 55 years of age and second only to lung cancer as a cause of cancer death. Biomarkers have become an important diagnostic tool in prostate cancer. The discovery of the serum marker prostate-specific antigen (PSA) significantly facilitated the detection and management of prostate cancer. As we enter into the post-genomics era, novel biomarkers of prostate cancer of therapeutic significance will invariably emerge. Here we review a series of existing and emerging molecular-based prognostic markers particularly with radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polascik TJ, Pearson JD, Partin AW (1998) Multivariate models as predictors of pathological stage using Gleason score, clinical stage, and serum prostate-specific antigen. Semin Urol Oncol 16:160–171

    CAS  PubMed  Google Scholar 

  2. Partin AW, Kattan MW, Subong EN, Walsh PC, Wojno KJ, Oesterling JE, Scardino PT, Pearson JD (1997) Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277:1445–1451

    CAS  PubMed  Google Scholar 

  3. Partin AW, Yoo J, Carter HB, Pearson JD, Chan DW, Epstein JI, Walsh PC (1993) The use of prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with localized prostate cancer. J Urol 150:110–114

    CAS  PubMed  Google Scholar 

  4. Partin AW, Steinberg GD, Pitcock RV, Wu L, Piantadosi S, Coffey DS, Epstein JI (1992) Use of nuclear morphometry, Gleason histologic scoring, clinical stage, and age to predict disease-free survival among patients with prostate cancer. Cancer 70:161–168

    CAS  PubMed  Google Scholar 

  5. Hammond ME, Fitzgibbons PL, Compton CC, Grignon, DJ Page DL, Fielding LP, Bostwick D, Pajak TF (2000) College of American Pathologists Conference XXXV: solid tumor prognostic factors-which, how and so what? Summary document and recommendations for implementation. Cancer Committee and Conference Participants. Arch Pathol Lab Med 124:958–965

    CAS  PubMed  Google Scholar 

  6. Ross S, Sheehan CE, Fisher HA, Kauffman RA, Dolen EM, Kallakury BV (2002) Prognostic markers in prostate cancer. Expert Rev Mol Diagn 2:129–142

    CAS  PubMed  Google Scholar 

  7. Ross JS, Sheehan CE, Dolen EM, Kallakury BV (2002) Morphologic and molecular prognostic markers in prostate cancer. Adv Anat Pathol 9:115–128

    PubMed  Google Scholar 

  8. Bubendorf L (2001) High-throughput microarray technologies: from genomics to clinics. Eur Urol 40:231–238

    Article  CAS  PubMed  Google Scholar 

  9. Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2:918–926

    Article  CAS  PubMed  Google Scholar 

  10. Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2:210–219

    Article  CAS  PubMed  Google Scholar 

  11. Amanatullah DF, Reutens AT, Zafonte BT, Fu M, Mani S, Pestell RG (2000) Cell-cycle dysregulation and the molecular mechanisms of prostate cancer. Front Biosci 5:D372–390

    CAS  PubMed  Google Scholar 

  12. Alers JC, Rochat J, Krijtenburg PJ, Hop WC, Kranse R, Rosenberg C, Tanke HJ, Schroder FH, van Dekken H (2000) Identification of genetic markers for prostatic cancer progression. Lab Invest 80:931–942

    CAS  PubMed  Google Scholar 

  13. Isaacs JT (1997) Molecular markers for prostate cancer metastasis. Am J Pathol 150:1511–1521

    CAS  PubMed  Google Scholar 

  14. Gopalkrishnan RV, Kang DC, Fisher PB (2001) Molecular markers and determinants of prostate cancer metastasis. J Cell Physiol 189:245–256

    Article  CAS  PubMed  Google Scholar 

  15. Newmark JR, Hardy DO, Tonb DC, Carter BS, Epstein JI, Isaacs WB, Brown TR, Barrack ER (1992) Androgen receptor gene mutations inhuman prostate cancer. Proc Natl Acad Sci U S A 89:6319–6323

    CAS  PubMed  Google Scholar 

  16. Goel A, Abou-Ellela A, DeRose PB (1996) The prognostic significance of proliferation in prostate cancer. J Urol Pathol 4:213–223

    Google Scholar 

  17. Scalzo DA, Kallakury BV, Gaddipati RV, Sheehan CE, Keys HM, Savage D, Ross JS (1998) Cell proliferation rate by MIB-1immunohistochemistry predicts post-radiation recurrence of prostatic adenocarcinomas. Am J Clin Pathol 109:163–168

    CAS  PubMed  Google Scholar 

  18. Visakorpi T (1992) Proliferative activity determined by DNA flow cytometry and proliferating cell nuclear antigen (pcna) immunohistochemistry as a prognostic factor in prostatic carcinoma. J Pathol 168:7–13

    CAS  PubMed  Google Scholar 

  19. Sadasivan R, Morgan R, Jennings S, Austenfeld M, Van Veldhuizen P, Stephens R, Noble M (1993) Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 150:126–131

    CAS  PubMed  Google Scholar 

  20. Henke RP, Kruger E, Ayhan N, Hubner D, Hammerer P (1993) Numerical chromosomal aberrations in prostate cancer: correlation with morphology and cell kinetics. Virchows Arch Pathol Anat Histopathol 422:61–66

    CAS  Google Scholar 

  21. Kaibuchi T, Furuya Y, Akakura K, Masai M, Ito H (2000) Changes in cell proliferation and apoptosis during local progression of prostate cancer. Anticancer Res 20:1135–1139

    CAS  PubMed  Google Scholar 

  22. Cheng L, Pisansky TM, Sebo TJ, Leibovich BC, Ramnani DM, Weaver AL, Scherer BG, Blute ML, Zincke H, Bostwick DG (1999) Cell proliferation in prostate cancer patients with lymph node metastasis: a marker for progression. Clin Cancer Res 5:2820–2823

    CAS  PubMed  Google Scholar 

  23. Cowen D, Troncoso P, Khoo VS, Zagars GK, von Eschenbach AC, Meistrich ML, Pollack A (2002) Ki-67 staining is an independent correlate of biochemical failure in prostate cancer treated with radiotherapy. Clin Cancer Res 8:1148–1154

    PubMed  Google Scholar 

  24. Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C (2000) Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone. Clin Cancer Res 6:1891–1895

    CAS  PubMed  Google Scholar 

  25. Cheng L, Lloyd RV, Weaver AL, Pisansky TM, Cheville JC, Ramnani DM, Leibovich BC, Blute ML, Zincke H, Bostwick DG (2000) The cell cycle inhibitors p21WAF1 and p27KIP1 are associated with survival in patients treated by salvage prostatectomy after radiation therapy. Clin Cancer Res 6:1896–1899

    CAS  PubMed  Google Scholar 

  26. Kuczyk MA, Bokemeyer C, Hartmann J, Schubach J, Walter C, Machtens S, Knuchel R, Kollmannsberger C, Jonas U, Serth J (2001) Predictive value of altered p27Kip1 and p21WAF/Cip1 protein expression for the clinical prognosis of patients with localized prostate cancer. Oncol Rep 8:1401–1407

    CAS  PubMed  Google Scholar 

  27. Omar EA, Behlouli H, Chevalier S, Aprikian AG (2001) Relationship of p21(WAF-I) protein expression with prognosis in advanced prostate cancer treated by androgen ablation. Prostate 49:191–199

    Article  CAS  PubMed  Google Scholar 

  28. Yang RM, Naitoh J, Murphy M, Wang HJ, Phillipson J, deKernion JB, Loda M, Reiter RE (1998) Low p27 expression predicts poor disease-free survival in patients with prostate cancer. J Urol 159:941–945

    CAS  PubMed  Google Scholar 

  29. Kuczyk M, Machtens S, Hradil K, Schubach J, Christian W, Knuchel R, Hartmann J, Bokemeyer C, Jonas U, Serth J (1999) Predictive value of decreased p27Kip1 protein expression for the recurrence-free and long-term survival of prostate cancer patients. Br J Cancer 81:1052–1058

    Article  CAS  PubMed  Google Scholar 

  30. Halvorsen OJ, Hostmark J, Haukaas S, Hoisaeter PA, Akslen LA (2000) Prognostic significance of p16 and CDK4 proteins in localized prostate carcinoma. Cancer 88:416–424

    Article  CAS  PubMed  Google Scholar 

  31. Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufman RP Jr, Ross JS (1997) Prognostic significance of p34cdc2 and cyclin D1 protein expression in prostatic adenocarcinomas. Cancer 80:753–763

    Article  CAS  PubMed  Google Scholar 

  32. Ross JS, Nazeer T, Church K, Amato C, Figge H, Rifkin MD, Fisher HA (1993) Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer 72:3020–3028

    CAS  PubMed  Google Scholar 

  33. Winkler HZ, Rainwater LM, Myers RP, Farrow GM, Therneau TM, Zincke H, Lieber MM (1988) Stage D1 prostatic carcinoma: significance of DNA ploidy patterns studied by flow cytometry. Mayo Clin Proc 63:103–112

    CAS  PubMed  Google Scholar 

  34. Babiarz J, Peters JM, Miles B, Crissman JD (1993) The prognostic significance of the nuclear DNA content in localized prostatic adenocarcinoma. Anal Quant Cytol Histol 15:158–164

    CAS  PubMed  Google Scholar 

  35. Peters-Gee JM, Miles BJ, Cerny JC, Gaba AR, Jacobsen G, Crissman JD (1992) Prognostic significance of DNA quantification in stage D1 prostatic carcinoma with the use of image analysis. Cancer 70:1159–1165

    CAS  PubMed  Google Scholar 

  36. Foster CS, McLoughlin J, Bashir I, Abel PD (1992) Markers of the metastatic phenotype in prostate cancer. Hum Pathol 23:381–394

    CAS  PubMed  Google Scholar 

  37. Montgomery BT, Nativ O, Blute ML, Farrow GM, Myers RP, Zincke H, Therneau TM, Lieber MM (1990) Stage B prostate adenocarcinoma: flow cytometric nuclear DNA ploidy analysis. Arch Surg 125:327–331

    CAS  PubMed  Google Scholar 

  38. Ross JS, Figge H, Bui HX, del Rosario AD, Jennings TA, Rifkin MD, Fisher HA (1994) Prediction of pathologic stage and post prostatectomy disease recurrence by DNA ploidy analysis of initial needle biopsy specimens of prostate cancer. Cancer 74:2811–2818

    CAS  PubMed  Google Scholar 

  39. Pollack A, Grignon DJ, Heydon KH, Hammond EH, Lawton CA, Mesic JB, Fu KK, Porter AT, Abrams RA, Shipley WU (2003) Prostate cancer DNA ploidy and response to salvage hormone therapy after radiotherapy with or without short-term total androgen blockade: an analysis of RTOG 8610. J Clin Oncol 21:1238–1248

    Article  CAS  PubMed  Google Scholar 

  40. Ross JS, Sheehan CE, Ambros RA, Nazeer T, Jennings TA, Kaufman RP Jr, Fisher HA, Rifkin MD, Kallakury BV (1999) Needle biopsy DNA ploidy status predicts grade shifting in prostate cancer. Am J Surg Pathol 23:296–301

    Article  CAS  PubMed  Google Scholar 

  41. Brinker DA, Ross JS, Tran TA, Jones DM, Epstein JI (1999) Can ploidy of prostate carcinoma diagnosed on needle biopsy predict radical prostatectomy and grade? J Urol 162:2036–2039

    CAS  PubMed  Google Scholar 

  42. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman, J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    CAS  PubMed  Google Scholar 

  43. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    CAS  PubMed  Google Scholar 

  44. Bigler SA, Deering RE, Brawer MK (1993) Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum Pathol 24:220–226

    CAS  PubMed  Google Scholar 

  45. Siegal JA, Enyou YU, Brawer MK (1995) Topography of neovascularity in human prostate carcinoma. Cancer 75:2545–2551

    CAS  PubMed  Google Scholar 

  46. Silberman MA, Partin AW, Veltri RW, Epstein JI (1997) Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in Gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer 79:772–779

    Article  CAS  PubMed  Google Scholar 

  47. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA (1994) Predictors of pathologic stage in prostatic carcinoma. Cancer 73:678–687

    CAS  PubMed  Google Scholar 

  48. Gettman MT, Bergstrahl EJ, Blute M (1998) Prediction of patient outcome in pathologic stage T2 adenocarcinoma of the prostate: lack of significance for microvessel density. Urology 51:79–85

    Article  CAS  PubMed  Google Scholar 

  49. Jackson MW, Roberts JS, Heckford SE, Ricciardelli C, Stahl J, Choong C, Horsfall DJ, Tilley WD (2002) A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res 62:854–859

    CAS  PubMed  Google Scholar 

  50. Soker S, Kaefer M, Johnson M, KlagsbrunM, Atala A, Freeman MR (2001) Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol 159:651–659

    CAS  PubMed  Google Scholar 

  51. Korsmeyer SJ (1992) Bcl-2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886

    CAS  PubMed  Google Scholar 

  52. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R (1995) Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55:4438–4445

    CAS  PubMed  Google Scholar 

  53. Apakama I, Robinson MC, Walter NM, Charlton RG, Royds JA, Fuller CE, Neal DE, Hamdy FC (1996) Bcl-2 overexpression combined with p53 protein accumulation correlates with hormone-refractory prostate cancer. Br J Cancer 74:1258–1262

    CAS  PubMed  Google Scholar 

  54. Gleave ME, Miayake H, Goldie J, Nelson C, Tolcher A (1999) Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 54:36–46

    Article  CAS  PubMed  Google Scholar 

  55. Bylund A, Stattin P, Widmark A, Bergh A (1998) Predictive value of bcl-2 immunoreactivity in prostate cancer patients treated with radiotherapy. Radiother Oncol 49:143–148

    Article  CAS  PubMed  Google Scholar 

  56. Mackey TJ, Borkowski A, Amin P, Jacobs SC, Kyprianou N (1998) Bcl-2/bax ratio as a predictive marker for therapeutic response to radiotherapy in patients with prostate cancer. Urology 52:1085–1090

    CAS  PubMed  Google Scholar 

  57. Scherr DS, Vaughan ED Jr, Wei J, Chung M, Felsen D, Allbright R, Knudsen BS (1999) Bcl-2 and p53 expression in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol 162:12–17

    CAS  PubMed  Google Scholar 

  58. Szostak MJ, Kaur P, Amin P, Jacobs SC, Kyprianou N (2001) Apoptosis and bcl-2 expression in prostate cancer: significance in clinical outcome after brachytherapy. J Urol 165:2126–2130

    CAS  PubMed  Google Scholar 

  59. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    CAS  PubMed  Google Scholar 

  60. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74:597–608

    CAS  PubMed  Google Scholar 

  61. Chao DT, Linette GP, Boise LH, White LS, Thompson CB, Korsmeyer SJ (1995) Bcl-XL and Bcl-2 repress a common pathway of cell death. J Exp Med 182:821–828

    CAS  PubMed  Google Scholar 

  62. Sedlak TW, Oltvai ZN, Yang E, Wang K, Boise LH, Thompson CB, Korsmeyer SJ (1995) Multiple Bcl-2 family members demonstrate selective dimerizations with Bax. Proc Natl Acad Sci U S A 92:7834–7838

    CAS  PubMed  Google Scholar 

  63. Clarke MF, Apel IJ, Benedict MA, Eipers PG, Sumantran V, Gonzalez-Garcia M, Doedens M, Fukunaga N, Davidson B, Dick JE, Minn AJ, Boise LH, Thompson CB, Wicha M, Nunez G (1995) A recombinant bcl-Xs adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc Natl Acad Sci U S A 92:11024–11028

    CAS  PubMed  Google Scholar 

  64. Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K, Kitada S, Reed JC (1996) Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol 148:1567–1576

    PubMed  Google Scholar 

  65. Hendry JH, Potten CS (1982) Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. Int J Radiat Biol Relat Stud Phys Chem Med 42:621–628

    CAS  PubMed  Google Scholar 

  66. Pollack A, Salem N, Ashoori F, Hachem P, Sangha M, von Eschenbach AC, Meistrich ML (2001) Lack of prostate cancer radiosensitization by androgen deprivation. Int J Radiat Oncol Biol Phys 51:1002–1007

    Article  CAS  PubMed  Google Scholar 

  67. Sentman CL, Shutter JR, Hockenbery D, Kanagawa O, Korsmeyer SJ (1991) bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67:879–888

    CAS  PubMed  Google Scholar 

  68. Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch AD, White RW (1998) P53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 51:346–351

    Article  CAS  PubMed  Google Scholar 

  69. Rakozy C, Grignon DJ, Sarkar FH, Sakr WA, Littrup P, Forman J (1998) Expression of bcl-2, p53, and p21 in benign and malignant prostatic tissue before and after radiation therapy. Mod Pathol 11:892–899

    CAS  PubMed  Google Scholar 

  70. Grossfeld GD, Olumi AF, Connolly JA, Chew K, Gibney J, Bhargava V, Waldman FM, Carroll PR (1998) Locally recurrent prostate tumors following either radiation therapy or radical prostatectomy have changes in Ki-67 labeling index, p53 and bcl-2 immunoreactivity. J Urol 159:1437–1443

    CAS  PubMed  Google Scholar 

  71. Pollack A, Cowen D, Troncoso P, Zagars GK, von Eschenbach AC, Meistrich ML, McDonnell T (2003) Molecular markers of outcome after radiotherapy in patients with prostate carcinoma: Ki-67, bcl-2, bax, and bcl-x. Cancer 97:1630–1638

    Article  PubMed  Google Scholar 

  72. Wikstrom P, Bergh A, Damber JE (2000) Transforming growth factor-β1 and prostate cancer. Scand J Urol Nephrol 34:85–94

    Article  CAS  PubMed  Google Scholar 

  73. Ahmed MM, Chendil D, Lele S, Venkatasubbarao K, Dey S, Ritter M, Rowland RG, Mohiuddin M (2001) Early growth response-1 gene: potential radiation response gene marker in prostate cancer. Am J Clin Oncol 24:500–505

    Article  CAS  PubMed  Google Scholar 

  74. Bussemakers MJ (1992) Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 52:2916–2922

    CAS  PubMed  Google Scholar 

  75. Giroldi LA, Schalken JA (1993) Decreased expression of the intercellular adhesion molecule E-cadherin in prostate cancer: biological significance and clinical implications. Cancer Metastasis Rev 12:29–37

    CAS  PubMed  Google Scholar 

  76. Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HF, Schaafsma HE, Debruyne FM, Isaacs WB (1992) Expression of the cellular adhesion molecule e-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res 52:5104–5109

    CAS  PubMed  Google Scholar 

  77. Bussemakers MJ, Van Bokhoven A, Tomita K, Jansen CF, Schalken JA (2000) Complex cadherin expression in human prostate cancer cells. Int J Cancer 85:446–450

    Article  CAS  PubMed  Google Scholar 

  78. Ross JS, Figge HL, Bui HX, del Rosario AD, Fisher HA, Nazeer T, Jennings TA, Ingle R, Kim DN (1994) E-cadherin expression in prostatic carcinoma biopsies: correlation with tumor grade, DNA content, pathologic stage and clinical outcome. Mod Pathol 7:835–841

    CAS  PubMed  Google Scholar 

  79. Sandberg AA (1992) Chromosomal abnormalities and related events in prostate cancer. Hum Pathol 23:368–380

    CAS  PubMed  Google Scholar 

  80. Kallakury BV, Sheehan CE, Winn-Deen E, Oliver J, Fisher HA, Kaufman RP Jr, Ross JS (2001) Decreased expression of catenins (α and β), p120 CTN and E-cadherin cell adhesion protein and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer 92:2786–2795

    Article  CAS  PubMed  Google Scholar 

  81. Harington KJ, Syrigos KN (2000) The role of E-cadherin-catenin complex: more than an intercellular glue? Ann Surg Oncol 7:783–788

    PubMed  Google Scholar 

  82. Pujol P, Maudelonde T, Daures JP, Rouanet P, Brouillet JP, Pujol H, Rochefort H (1993) A prospective study of the prognostic value of cathepsin D levels in breast cancer cytosol. Cancer 71:2006–2012

    CAS  PubMed  Google Scholar 

  83. Makar R (1994) Immunohistochemical analysis of cathepsin D in prostate carcinoma. Mod Pathol 7:747–751

    CAS  PubMed  Google Scholar 

  84. Ross JS (1995) Quantitative immunohistochemical determination of cathepsin D levels in prostatic carcinoma biopsies. Am J Clin Pathol 104:36–41

    CAS  PubMed  Google Scholar 

  85. McCabe NP, Angwafo FF 3rd, Zaher A, Selman SH, Kouinche A, Jankun J (2000) Expression of soluble urokinase plasminogen activator receptor may be related to outcome in prostate cancer patients. Oncol Rep 7:879–882

    CAS  PubMed  Google Scholar 

  86. Wang YZ, Wong YC (1997) Oncogenes and tumor suppressor genes in prostate cancer: a review. Urol Oncol 3:41–46

    Article  CAS  Google Scholar 

  87. Neto GJ, Humphrey PA (1994) Molecular biologic aspects of human prostatic carcinoma. Am J Clin Pathol 102 [Suppl 1]:S57–S64

    Google Scholar 

  88. Kleihues P, Schäuble B, zur Hausen A, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150:1–13

    CAS  PubMed  Google Scholar 

  89. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14:2410–2434

    Article  CAS  PubMed  Google Scholar 

  90. Grignon DJ, Caplan R, Sarkar FH, Lawton CA, Hammond EH, Pilepich MV, Forman JD, Mesic J, Fu KK, Abrams RA, Pajak TF, Shipley WU, Cox JD (1997) p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst 89:158–165

    Article  CAS  PubMed  Google Scholar 

  91. Cheng L, Sebo TJ, Cheville JC, Pisansky TM, Slezak J, Bergstralh EJ, Pacelli A, Neumann RM, Zincke H, Bostwick DG (1999) p53 protein overexpression is associated with increased cell proliferation in patients with locally recurrent prostate carcinoma after radiation therapy. Cancer 85:1293–1299

    Article  CAS  PubMed  Google Scholar 

  92. Ross JS, Fletcher JA (1998) The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor and target of therapy. Oncologist 3:237–252

    PubMed  Google Scholar 

  93. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G, Balk S, Thomas G, Kaplan I, Hlatky L, Hahnfeldt P, Kantoff P, Loda M (2000) Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst 92:1918–1925

    Article  CAS  PubMed  Google Scholar 

  94. Fossa A, Lilleby W, Fossa SD, Gaudernack G, Torlakovic G, Berner A (2002) Independent prognostic significance of HER-2 oncoprotein expression in pN0 prostate cancer undergoing curative radiotherapy. Int J Cancer 99:100–105

    Article  CAS  PubMed  Google Scholar 

  95. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    CAS  PubMed  Google Scholar 

  96. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV (1997) Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    CAS  PubMed  Google Scholar 

  97. Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A, Steck PA (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57:5221–5225

    CAS  PubMed  Google Scholar 

  98. Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S, Paul JD, Hbaiu A, Goode RG, Sandusky GE, Vessella RL, Neubauer BL (2000) Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J Biol Chem 275:24500–24505

    Article  CAS  PubMed  Google Scholar 

  99. McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR (1999) Loss of PTEN expression in paraffin embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59:4291–4296

    CAS  PubMed  Google Scholar 

  100. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95:15587–15591

    CAS  PubMed  Google Scholar 

  101. Heidenreich B, Heidenreich A, Sesterhenn A, Srivastava S, Moul JW, Sesterhenn IA (2000) Aneuploidy of chromosome 9 and the tumor suppressor genes p16(INK4) and p15(INK4B) detected by in situ hybridization in locally advanced prostate cancer. Eur Urol 38:475–482

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen TT, Nguyen CT, Gonzales FA, Nichols PW, Yu MC, Jones PA (2000) Analysis of cyclin-dependent kinase inhibitor expression and methylation patterns in human prostate cancers. Prostate 43:233–242

    Google Scholar 

  103. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT (1996) Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin Cancer Res 2:389–398

    CAS  PubMed  Google Scholar 

  104. Kallakury BV, Figge J, Leibovich B, Hwang J, Rifkin M, Kaufman R, Figge HL, Nazeer T, Ross JS (1996) Increased bcl-2 protein levels in prostatic adenocarcinomas are not associated with rearrangements in the 2.8 kb major breakpoint region or with p53 protein accumulation. Mod Pathol 9:41–47

    CAS  PubMed  Google Scholar 

  105. Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59:279–284

    CAS  PubMed  Google Scholar 

  106. Yoshida BA, Dubauskas Z, Chekmareva MA, Christiano TR, Stadler WM, Rinker-Schaeffer CW (1999) Mitogen-activated protein kinase kinase 4/stress-activated protein/Erkkinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 59:5483–5487

    CAS  PubMed  Google Scholar 

  107. Razani B, Schlegel A, Liu J, Lisanti MP (2001) Caveolin-1, a putative tomor suppressor gene. Biochem Soc Trans 29:494–499

    CAS  Google Scholar 

  108. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, Tahir SA, Thompson TC (2001) Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61:4386–4392

    CAS  PubMed  Google Scholar 

  109. Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR (2001) Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 46:249–256

    Article  CAS  PubMed  Google Scholar 

  110. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629

    Article  CAS  PubMed  Google Scholar 

  111. Yang G, Truong LD, Wheeler TM, Thompson TC (1999) Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59:5719–5723

    CAS  PubMed  Google Scholar 

  112. Joensuu H, Anttonen A, Eriksson M, Makitaro R, Alfthan H, Kinnula V, Leppa S (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer. Cancer Res 62:5210–5217

    CAS  PubMed  Google Scholar 

  113. Anttonen A, Heikkila P, Kajanti M, Jalkanen M, Joensuu H (2001) High syndecan-1 expression is associated with favorable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer 32:297–305

    Article  CAS  PubMed  Google Scholar 

  114. Wiksten JP, Lundin J, Nordling S, Kokkola A, Haglund CA (2000) prognostic value of syndecan-1 in gastric cancer. Anticancer Res 20:4905–4907

    CAS  PubMed  Google Scholar 

  115. Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, Waage A, Borset M (2000) Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood 95:388–392

    CAS  PubMed  Google Scholar 

  116. Chakravarti A, Winter K, Wu C-L, Kaufman D, Hammond E, Parliament M, Tester W, Hagan M, Grignon D, Heney N, Sandler H, Shipley W (2002) Expression of the epidermal growth factor receptor (EGFR) is associated with improved outcome in muscle-invading bladder cancer. Proc ASCO, abstract 713

  117. Anttonen A, Kajanti M, Heikkila P, Jalkanen M, Joensuu H (1999) Syndecan-1 expression has prognostic significance in head and neck carcinoma. Br J Cancer 79:558–564

    Article  CAS  PubMed  Google Scholar 

  118. Watanabe H, Hori A, Seno M, Kozai Y, Igarashi K, Ichimori Y, Kondo K (1991) A sensitive enzyme immunoassay for human basic fibroblast growth factor. Biochem Biophys Res Commun 175:229–235

    CAS  PubMed  Google Scholar 

  119. Battistini B, D'Orleans-Juste P, Sirois P (1993) Endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest 68:600–628

    CAS  PubMed  Google Scholar 

  120. Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW (1995) Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nature Med 1:944–949

    CAS  PubMed  Google Scholar 

  121. Kopetz ES, Nelson JB, Carducci MA (2002) Endothelin-1 as a target for therapeutic intervention in prostate cancer. Invest New Drugs 20:173–182

    Article  CAS  PubMed  Google Scholar 

  122. Zellweger T, Ninck C, Mirlacher M, Annefeld M, Glass AG, Gasser TC, Mihatsch MJ, Gelmann EP, Bubendorf L (2003) Tissue microarray analysis reveals prognostic significance of syndecan-1 expression in prostate cancer. Prostate 55:20–29

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnab Chakravarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarti, A., Zhai, G.G. Molecular and genetic prognostic factors of prostate cancer. World J Urol 21, 265–274 (2003). https://doi.org/10.1007/s00345-003-0362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-003-0362-z

Keywords

Navigation