Skip to main content
Log in

Seed Priming with Iron Oxide Nanoparticles Ameliorates As Toxicity by Decreasing Organic Acid Exudation Pattern and Modulating Specific Gene Expression in Rapeseed (Brassica napus L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2024

This article has been updated

Abstract

Nanotechnology represents an innovative approach to ameliorating abiotic stress in oilseed crops, with the application of iron oxide nanoparticles (FeO−NPs) gaining notable popularity recently. Therefore, we have utilized FeO−NPs as an alleviating agent on an oilseed crop, specifically rapeseed (Brassica napus L.), grown in soil with varying levels of arsenic (As). This study investigates various growth−related attributes, the efficiency of the photosynthetic machinery, indicators of oxidative stress, and responses of both enzymatic and non-enzymatic antioxidants, along with their specific gene expression, sugar content, organic acids exudation pattern and As accumulation in different parts of the plant. Our findings indicated that soil contaminated with As reduced crop growth, photosynthetic efficiency, and nutritional status in plants, while simultaneously enhancing oxidative stress indicators, organic acid exudation, activity of both enzymatic and non-enzymatic antioxidants and their related gene expressions, and endogenous As content in the shoots and roots of B. napus. Moreover, increasing levels of As in the soil caused a signifcant increase in proline and organic acids exudation pattern. However, the exogenous application of FeO−NPs enhanced plant growth and the photosynthetic rate in B. napus by boosting the antioxidant system and mineral status, and by reducing the concentrations of oxidative stress biomarkers, organic acids, and As accumulation in both roots and shoots. Hence, this study suggests that seed priming with FeO−NPs is an effective technique that can be employed to fortify nutrients and mitigate metal toxicity in areas polluted with metals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data and material is available for research purpose and for reference.

Change history

References

  • Aebi H (1984). [13] Catalase in vitro. In: Methods in enzymology, vol 105. Elsevier, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  • Alwutayd KM, Alghanem SM, Alwutayd R, Alghamdi SA, Alabdallah NM, Al-Qthanin RN, Sarfraz W, Khalid N, Naeem N, Ali B, Saleem MH (2024) Mitigating chromium toxicity in rice (Oryza sativa L.) via ABA and 6-BAP: Unveiling synergistic benefits on morphophysiological traits and ASA-GSH cycle. Sci Total Environ 908:168208

    Article  CAS  PubMed  Google Scholar 

  • Abeed AH, Al-Huqail AA, Albalawi S, Alghamdi SA, Ali B, Alghanem SM, Al-Haithloul HA, Amro A, Tammam SA, El-Mahdy MT (2023). Calcium nanoparticles mitigate severe salt stress in Solanum lycopersicon by instigating the antioxidant defense system and renovating the protein profile. South African J Bot 161:36-52

    Article  CAS  Google Scholar 

  • Alatawi A, Mfarrej MFB, Alshegaihi RM, Asghar MA, Mumtaz S, Yasin G, Marc RA, Fahad S, Elsharkawy MM, Javed S, Ali S (2023) Application of silicon and sodium hydrosulfide alleviates arsenic toxicity by regulating the physio-biochemical and molecular mechanisms of Zea mays. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-27739-y

    Article  Google Scholar 

  • Ali E, Hussain N, Shamsi IH, Jabeen Z, Siddiqui MH, Jiang L-x (2018) Role of jasmonic acid in improving tolerance of rapeseed (Brassica napus L.) to Cd toxicity. J Zhejiang Univ Sci B 19:130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Wang X, Haroon U, Chaudhary HJ, Kamal A, Ali Q, Saleem MH, Usman K, Alatawi A, Ali S, Hussain Munis MF (2022) Antifungal activity of Zinc nitrate derived nano Zno fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit. Ecotoxicol Environ Saf 233:113311

    Article  CAS  PubMed  Google Scholar 

  • Alsafran M, Usman K, Ahmed B, Rizwan M, Saleem MH, Al Jabri H (2022) Understanding the phytoremediation mechanisms of potentially toxic elements: a proteomic overview of recent advances. Front Plant Sci. https://doi.org/10.3389/fpls.2022.881242

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol Beta Vulgaris Plant Physiol 24:1

    CAS  Google Scholar 

  • Austin RB (1990) Prospects for genetically increasing the photosynthetic capacity of crops. Plant Biolo 10:567–586

    Google Scholar 

  • Azuma K, Nakayama M, Koshioka M, Ippoushi K, Yamaguchi Y, Kohata K, Yamauchi Y, Ito H, Higashio H (1999) Phenolic antioxidants from the leaves of Corchorus olitorius L. J Agric Food Chem 47:3963–3966

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhat JA, Ahmad P, Corpas FJ (2020) Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. J Hazard Mater 406:124289

    Article  PubMed  Google Scholar 

  • Bhat JA, Bhat MA, Abdalmegeed D, Yu D, Chen J, Bajguz A, Ahmad A, Ahmad P (2022a) Newly-synthesized iron-oxide nanoparticles showed synergetic effect with citric acid for alleviating arsenic phytotoxicity in soybean. Environ Pollut 295:118693

    Article  CAS  PubMed  Google Scholar 

  • Bhat JA, Faizan M, Bhat MA, Huang F, Yu D, Ahmad A, Bajguz A, Ahmad P (2022b) Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere 288:132471

    Article  CAS  PubMed  Google Scholar 

  • Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S (2022) Nanobioremediation: a sustainable approach for the removal of toxic pollutants from the environment. J Hazard Mater 427:128033

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Guha G, Gupta K, Chattopadhyay D, Mukhopadhyay A, Ghosh UC (2014) Trend of arsenic pollution and subsequent bioaccumulation in Oryza sativa and Corchorus capsularis in Bengal Delta. Int Lett Nat Sci. https://doi.org/10.56431/p-qeclg6

    Article  Google Scholar 

  • Bidi H, Fallah H, Niknejad Y, Tari DB (2021) Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol Biochem 163:348–357

    Article  CAS  PubMed  Google Scholar 

  • Bray H, Thorpe W (1954) Analysis of phenolic compounds of interest in metabolism. In: Glick D (ed) Methods of biochemical analysis. Wiley, Hoboken, pp 27–52

    Chapter  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16:23630–23650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes-Avilés P, Huang X, Keller AA (2021) Dissolution and aggregation of metal oxide nanoparticles in root exudates and soil leachate: implications for nanoagrochemical application. Environ Sci Technol 55:13443–13451

    Article  PubMed  Google Scholar 

  • Chen C-N, Pan S-M (1996) Assay of superoxide dismutase activity by combining electrophoresis and densitometry. Bot Bull Acad Sinica 37:107

    CAS  Google Scholar 

  • Colwell J (1963) The estimation of the phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agric 3:190–197

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Pt R, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • El-Esawi MA, Elkelish A, Soliman M, Elansary HO, Zaid A, Wani SH (2020) Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants 9:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Li L, Ali B, Gill RA, Wang J, Ali S, Gill MB, Zhou W (2015) Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ Sci Pollut Res 22:10699–10712

    Article  CAS  Google Scholar 

  • Fatemi M, Mollania N, Momeni-Moghaddam M, Sadeghifar F (2018) Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol 270:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gill M (2014) Heavy metal stress in plants: a review. Int J Adv Res 2:1043–1055

    Google Scholar 

  • Greger M, Landberg T (2008) Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil 312:195–205

    Article  CAS  Google Scholar 

  • Gupta K, Mishra K, Srivastava S, Kumar A (2018) Cytotoxic assessment of chromium and arsenic using chromosomal behavior of root meristem in Allium cepa L. Bull Environ Contam Toxicol 100:803–808

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Horie M, Nishio K, Endoh S, Kato H, Fujita K, Miyauchi A, Nakamura A, Kinugasa S, Yamamoto K, Niki E (2013) Chromium (III) oxide nanoparticles induced remarkable oxidative stress and apoptosis on culture cells. Environ Toxicol 28:61–75

    Article  CAS  PubMed  Google Scholar 

  • Huq ME, Fahad S, Shao Z, Sarven MS, Al-Huqail AA, Siddiqui MH, ur Rahman MH, Khan IA, Alam M, Saeed M (2019) High arsenic contamination and presence of other trace metals in drinking water of Kushtia district, Bangladesh. J Environ Manag 242:199–209

    Article  CAS  Google Scholar 

  • Hussain A, Ali S, Rizwan M, ur Rehman MZ, Qayyum MF, Wang H, Rinklebe J (2019) Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol and Environ Saf 173:156–164

    Article  CAS  Google Scholar 

  • Hussain I, Afzal S, Ashraf MA, Rasheed R, Saleem MH, Alatawi A, Ameen F, Fahad S (2022) Effect of metals or trace elements on wheat growth and its remediation in contaminated soil. J Plant Growth Regul 42:2258

    Article  Google Scholar 

  • Irshad MA, Nawaz R, Rehman MZu, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S (2021) Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: a review. Ecotoxicol Environ Saf 212:111978

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquat Bot 11:67–77

    Article  CAS  Google Scholar 

  • Javed MT, Stoltz E, Lindberg S, Greger M (2013) Changes in pH and organic acids in mucilage of Eriophorum angustifolium roots after exposure to elevated concentrations of toxic elements. Environ Sci Pollut Res 20:1876–1880

    Article  CAS  Google Scholar 

  • Kamran M, Malik Z, Parveen A, Huang L, Riaz M, Bashir S, Mustafa A, Abbasi GH, Xue B, Ali U (2019) Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. J Plant Growth Regul 39:266–281https://doi.org/10.1007/s00344-019-09980-3

    Article  CAS  Google Scholar 

  • Kareem HA, Hassan MU, Zain M, Irshad A, Shakoor N, Saleem S, Niu J, Skalicky M, Chen Z, Guo Z, Wang Q (2022) Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. Environ Pollut 303:119069

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Awan SA, Rizwan M, Ali S, Zhang X, Huang L (2021) Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: a review. Environ Pollut 286:117389

    Article  CAS  PubMed  Google Scholar 

  • Kong M, Liang J, Ali Q, Wen W, Wu H, Gao X, Gu Q (2021) 5-Methoxyindole, a chemical homolog of melatonin, adversely affects the phytopathogenic fungus Fusarium graminearum. Int J Mol Sci 22:10991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Ahlawat W, Bhanjana G, Heydarifard S, Nazhad MM, Dilbaghi N (2014) Nanotechnology-based water treatment strategies. J Nanosci Nanotechnol 14:1838–1858

    Article  CAS  PubMed  Google Scholar 

  • Lewis CE, Walker JR, Lancaster JE, Sutton KH (1998) Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: coloured cultivars of Solanum tuberosum L. J Sci Food Agric 77:45–57

    Article  CAS  Google Scholar 

  • Liu X, Feng HY, Fu JW, Chen Y, Liu Y, Ma LQ (2018) Arsenic-induced nutrient uptake in As-hyperaccumulator Pteris vittata and their potential role to enhance plant growth. Chemosphere 198:425–431

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Upadhyay MK, Kumar JS, Barla A, Srivastava S, Jaiswal MK, Bose S (2019) Ultra-structure alteration via enhanced silicon uptake in arsenic stressed rice cultivars under intermittent irrigation practices in Bengal delta basin. Ecotoxicol Environ Saf 180:770–779

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Upadhyay MK, Giri B, Karwadiya J, Bose S, Jaiswal MK (2023) Iron oxide doped rice biochar reduces soil-plant arsenic stress, improves nutrient values: an amendment towards sustainable development goals. Chemosphere 312:137117

    Article  CAS  PubMed  Google Scholar 

  • Manjunatha S, Biradar D, Aladakatti YR (2016) Nanotechnology and its applications in agriculture: a review. J Farm Sci 29:1–13

    Google Scholar 

  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Alnusaire TS, Li B, Schulin R, Wang G (2021) Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ 769:145221

    Article  CAS  PubMed  Google Scholar 

  • Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G (2023) Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf 264:115382

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK (2021) Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: a review. Microbiol Res 250:126809

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Pokhrel S, Bandyopadhyay S, Mädler L, Peralta-Videa JR, Gardea-Torresdey JL (2014) A soil mediated phyto-toxicological study of iron doped zinc oxide nanoparticles (Fe@ ZnO) in green peas (Pisum sativum L.). Chem Eng J 258:394–401

    Article  CAS  Google Scholar 

  • Mushtaq T, Shah AA, Akram W, Yasin NA (2020) Synergistic ameliorative effect of iron oxide nanoparticles and Bacillus subtilis S4 against arsenic toxicity in Cucurbita moschata: polyamines, antioxidants, and physiochemical studies. Int J Phytorem 22:1408–1419

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Patowary R, Devi A, Mukherjee AK (2023) Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-27698-4

    Article  Google Scholar 

  • Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Methods 7:1776–1782

    Article  Google Scholar 

  • Qiao D, Lu H, Zhang X (2020) Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere. Environ Pollut 267:115452

    Article  CAS  PubMed  Google Scholar 

  • Rai P, Singh VP, Sharma S, Tripathi DK, Sharma S (2022) Iron oxide nanoparticles impart cross tolerance to arsenate stress in rice roots through involvement of nitric oxide. Environ Pollut 307:119320

    Article  CAS  PubMed  Google Scholar 

  • Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monitor Manag 9:76–84

    Article  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I (2020) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919

    Article  PubMed  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, ur Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  PubMed  Google Scholar 

  • Sakharov IY, Ardila GB (1999) Variations of peroxidase activity in cocoa (Theobroma cacao L.) beans during their ripening, fermentation and drying. Food Chem 65:51–54

    Article  CAS  Google Scholar 

  • Saleem M, Ali S, Rehman M, Rana M, Rizwan M, Kamran M, Imran M, Riaz M, Hussein M, Elkelish A, Lijun L (2020a) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province. China Chemosphere 248:126032

    Article  CAS  PubMed  Google Scholar 

  • Saleem MH, Rehman M, Fahad S, Tung SA, Iqbal N, Hassan A, Ayub A, Wahid MA, Shaukat S, Liu L, Deng G (2020b) Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica 58:836

    Article  CAS  Google Scholar 

  • Saleem MH, Mfarrej MFB, Alatawi A, Mumtaz S, Imran M, Ashraf MA, Rizwan M, Usman K, Ahmad P, Ali S (2022) Silicon enhances morpho–physio–biochemical responses in arsenic stressed spinach (Spinacia oleracea L.) by minimizing its uptake. J Plant Growth Regul 42:2053

    Article  Google Scholar 

  • Shahid M, Rafiq M, Niazi NK, Dumat C, Shamshad S, Khalid S, Bibi I (2017) Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environ Sci Pollut Res 24:16097–16106

    Article  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Khan MN, Corpas FJ, Al-Amri AA, Alsubaie QD, Ali HM, Kalaji HM, Ahmad PJJoHM, (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Ma L, Ma J, Li B, Zhu Y, Chen F (2022) Combined application of plant growth-promoting bacteria and iron oxide nanoparticles ameliorates the toxic effects of arsenic in Ajwain (Trachyspermum ammi L.). Front Plant Sci 13:1098755

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Mfarrej MFB, Song X, Ma J, Min B, Chen F (2023) New insights in to the ameliorative effects of zinc and iron oxide nanoparticles to arsenic stressed spinach (Spinacia oleracea L). Plant Physiol Biochem 199:107715

    Article  CAS  PubMed  Google Scholar 

  • Tanveer Y, Yasmin H, Nosheen A, Ali S, Ahmad A (2022) Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil. Environ Pollut 300:118889

    Article  CAS  PubMed  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  PubMed  Google Scholar 

  • UdDin I, Bano A, Masood S (2015) Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation. Ecotoxicol Environ Saf 113:271–278

    Article  CAS  PubMed  Google Scholar 

  • Ulhassan Z, Khan I, Hussain M, Khan AR, Hamid Y, Hussain S, Allakhverdiev SI, Zhou W (2022) Efficacy of metallic nanoparticles in attenuating the accumulation and toxicity of chromium in plants: current knowledge and future perspectives. Environ Pollut 315:120390

    Article  CAS  PubMed  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • ur Rehman AU, Nazir S, Irshad R, Tahir K, Rehman K, Islam RU, Wahab Z (2021) Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 321:114455

    Article  CAS  Google Scholar 

  • Wang X, Sun W, Ma X (2019) Differential impacts of copper oxide nanoparticles and copper (II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa). Environ Pollut 252:967–973

    Article  CAS  PubMed  Google Scholar 

  • Wen E, Yang X, Chen H, Shaheen SM, Sarkar B, Xu S, Song H, Liang Y, Rinklebe J, Hou D (2020) Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J Hazard Mater 407:124344

    Article  PubMed  Google Scholar 

  • Zaheer IE, Ali S, Saleem MH, Yousaf HS, Malik A, Abbas Z, Rizwan M, Abualreesh MH, Alatawi A, Wang X (2022) Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). PLoS ONE 17:e0262140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Zheng Y-M, Zhang B-G, Dai Y-R (2020) A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater 401:123608

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R402), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R402), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large Groups (Project under grant number R.G.P.2/ 161/ 43).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Aishah Alatawi; Data curation, Saba Saleem; Formal analysis, Rana M. Alshegaihi; Funding acquisition, Khairiah Mubarak Alwutayd, Manar Fawzi Bani Mfarrej, Amany H. A. Abeed and Muhammad Hamzah Saleem; Investigation, Aishah Alatawi; Methodology, Aishah Alatawi, Rana M. Alshegaihi; Project administration, Manar Fawzi Bani Mfarrej, Rana M. Alshegaihi and Muhammad Hamzah Saleem; Resources, Wajiha Sarfraz, Salem Albalawi and Muhammad Hamzah Saleem; Software, Khairiah Mubarak Alwutayd, Salem Albalawi and Muhammad Hamzah Saleem; Validation, Amany H. A. Abeed; Visualization, Amany H. A. Abeed; Writing—original draft, Aishah Alatawi, Wajiha Sarfraz, Shafaqat Ali, Khairiah Mubarak Alwutayd, Salem Albalawi and Rana M. Alshegaihi; Writing—review & editing, Rana M. Alshegaihi, Wajiha Sarfraz, Shafaqat Ali, Khairiah Mubarak Alwutayd, Salem Albalawi, Manar Fawzi Bani Mfarrej, Amany H. A. Abeed and Muhammad Hamzah Saleem.

Corresponding authors

Correspondence to Muhammad Hamzah Saleem or Shafaqat Ali.

Ethics declarations

Competing Interests

There is no competing interest in the publication of this manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Written consent was sought from each author to publish the manuscript.

Additional information

Handling Editor: Ariel D. Arencibia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In the Acknowledgements section of this article the grant number relating to Princess Nourah bint Abdulrahman University Researchers Supporting Project given for Khairiah Mubarak Alwutayd was incorrectly given as PNURSP2024R93 and should have been PNURSP2024R402 and in this article the statement in the Funding information section was incorrectly given as PNURSP2024R93 and should have read PNURSP2024R402.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 710 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshegaihi, R.M., Mfarrej, M.F.B., Alatawi, A. et al. Seed Priming with Iron Oxide Nanoparticles Ameliorates As Toxicity by Decreasing Organic Acid Exudation Pattern and Modulating Specific Gene Expression in Rapeseed (Brassica napus L.). J Plant Growth Regul (2024). https://doi.org/10.1007/s00344-024-11345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-024-11345-4

Keywords

Navigation