Skip to main content
Log in

Sinorhizobium saheli: Advancing Chromium Mitigation, Metal Adsorption, and Plant Growth Enhancement in Heavy Metal-Contaminated Environments

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Currently, agricultural land in most nations is threatened by heavy metal contamination, which could affect agricultural practices. This study screens out potential isolates from the consortia of microbiota recovered from the heavy metal-contaminated soil samples. The bacterial isolate was characterized and analyzed for its impending ability to tolerate heavy metals, chromium reduction, biosorption, and plant growth-promoting activities. The 16S rRNA gene sequencing method was used to identify the bacterial isolate. The phylogenetic analysis of accession number HE681416.1 confirmed that the approved isolate had a 99% chance of being Sinorhizobium saheli. Bacterial isolate was reduced and accumulated 91% chromium (Cr) and tolerated up to 1000 µgmL−1 of nickel (Ni) and 250 µgmL−1 of cadmium (Cd). Freundlich and Langmuir adsorption constants for heavy metal biosorption were calculated from isotherm. A correlation coefficient (r2 > 0.98) with a maximum of 96.24% copper (Cu) accumulation was found and followed the order with other metals as: Cu > Cr > Ni > Cd > Pb > Zn. Additionally, isolate significantly solubilized phosphate up to 285 ± 7 µgmL−1, produced indole acetic acid (IAA) up to 30.5 ± 1.9 µgmL−1 and siderophore (25.0 ± 1.5 µgmL−1). These findings revealed that microbial isolate was excellent metal tolerant and plant growth-enhancing traits in metal stress condition. It might be a significant bioinoculant for soil fertility restoration and crop development in metal-stressed real-field conditions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Ahemad M, Malik A (2012) Bioaccumulation of heavy metals by the zinc resistance bacteria isolated from the agriculture soils irrigated with wastewater. Bacteriol 2:12–21

    Article  Google Scholar 

  • Ahmed SF, Mofijur M, Parisa TA, Islam N, Kusumo F, Inayat A, Badruddin IA, Khan TY, Ong HC (2022) Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 286:131656

    Article  CAS  PubMed  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Banerjee S, Gothalwal R, Sahu PK, Sao S (2015) Microbial observation in bioaccumulation of heavy metals from the ash dyke of thermal power plants of Chhattisgarh, India. Adv Biosci Biotechnol 6:131–138

    Article  Google Scholar 

  • Boivin C, Ndoye I, Lortet G, Ndiaye A, Philippe DL, Dreyfus B (1997) The Sesbania root symbionts Sinorhizobium saheli and S teranga bv sesbaniae can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl Environ Microbiol 63(3):1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bric JM, Bostock RM, Silversone SE (1999) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Article  Google Scholar 

  • Carlos MH, Stefani PV, Janette AM, Melani MS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiol Res 188–189:53–61

    Article  PubMed  Google Scholar 

  • Chen J, Chen R, Hong M (2015) Influence of pH on hexavalent chromium reduction by Fe(II) and sulfide compounds. Water Sci Technol 72(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  PubMed  Google Scholar 

  • Cummings SP, Gyaneshwar P, Vinuesa P, Farruggia FT, Andrews M, Humphry D, Elliott GN, Nelson A, Orr C, Pettitt D, Shah GR (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11(10):2510–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danouche M, El Arroussi H, Bahafid W, El Ghachtouli N (2021) An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environ Technol Rev 10(1):58–76

    Article  CAS  Google Scholar 

  • de-Lajudie, Philippe, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K and Gillis M (1994) Polyphasic Taxonomy of Rhizobia: Emendation of the Genus Sinorhizobium and Description of Sinorhizobium meliloti comb nov, Sinorhizobium saheli sp nov, and Sinorhizobium teranga sp. nov. Int J Syst Evolut Microbiol 44(4): 715–733

    Google Scholar 

  • Díez BR, Quiñones MA, Fajardo S, López MA, Higueras P, Pascual MF (2012) Mercury-resistant rhizobial bacteria isolated from nodules of leguminous plants growing in high Hg-contaminated soils. Appl Microbiol Biotechnol 96(2):543–554

  • Durve A, Naphade S, Bhot M, Varghese J, Chandra N (2013) Quantitative evaluation of heavy metal bioaccumulation by microbes. J Microbiol Biotech Res 3(6):21–32

    CAS  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas sp. Nat Sci 5:393–416

    Google Scholar 

  • Fakhar A, Gul B, Gurmani AR, Khan SM, Ali S, Sultan T, Chaudhary HJ, Rafique M, Rizwan M (2020) Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: a review. Crit Rev Environ Sci Technol 24:1–48

    Google Scholar 

  • Gordon S, Weber RP (1951) The colorimetric estimation of IAA. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan SH, Van Ginkel SW, Oh SE (2012) Detection of Cr6+ by the sulfur-oxidizing bacteria biosensor: effect of different physical factors. Environ Sci Technol 46(14):7844–7848

    Article  CAS  PubMed  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Biores Technol 160:67–78

    Article  CAS  Google Scholar 

  • Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ (2014) Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Iram S, Shabbir R, Zafar H, Javaid M (2015) Biosorption and bioaccumulation of copper and lead by heavy metal-resistant fungal isolates. Arab J Sci Eng 40(7):1867–1873

    Article  CAS  Google Scholar 

  • Jamil M, Malook I, Rehman SU, Khan MD, Fayyaz M, Aslam MM, Rha ES (2022) Multivariate geo-statistical perspective: evaluation of agricultural soil contaminated by industrial estate’s effluents. Environ Geochem Health 44:57–68

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen nov. Int J Syst Evol Microbiol 47(3):895–898

    Article  Google Scholar 

  • Kang X, Yu X, Zhang Y, Cui Y, Tu W, Wang Q, Li Y, Hu L, Gu Y, Zhao K, Xiang Q (2008) Inoculation of Sinorhizobium saheli YH1 leads to reduced metal uptake for Leucaena leucocephala grown in mine tailings and metal-polluted soils. Front Microbiol 1853:15

    Google Scholar 

  • Ke Z, Huang Q, Zhang H, Yu Z (2011) Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface. Environ Sci Technol 45(18):7841–7847

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth-promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chem Let 7(1):1–19

    Article  Google Scholar 

  • Lortet G, Méar N, Lorquin J, Dreyfus B, De Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. MPMI-Mol Plant Microbe Interact 9(8):736–747

    Article  Google Scholar 

  • Lutts S, Lefèvre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918

    Article  PubMed  PubMed Central  Google Scholar 

  • Madoni P, Davoli D, Gorbi G, Vescovi L (1996) Toxic effect of heavy metals on the activated sludge protozoan community. Water Res 30:135–141

    Article  CAS  Google Scholar 

  • Masaki Y, Hirajima T, Sasaki K, Okibe N (2015) Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC. Extremophiles 19:495–503

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Bharagava RN, More N, Yadav A, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health. In: Environmental biotechnology: For sustainable future, pp 103–125. https://doi.org/10.1007/978-981-10-7284-0_5

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Mohamad OA, Hao X, Xie P, Hatab S, Lin Y, Wei G (2012) Biosorption of copper (II) from aqueous solution using non-living Mesorhizobium amorphae strain CCNWGS0123. Microbes Environ 27(3):234–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen TQ, Sesin V, Kisiala A, Emery RN (2021) Phytohormonal roles in plant responses to heavy metal stress: Implications for using macrophytes in phytoremediation of aquatic ecosystems. Environ Toxicol Chem 40(1):7–22

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Balgobind A, Pillay B (2013) Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int J Mol Sci 14(5):10197–10228

    Article  PubMed  PubMed Central  Google Scholar 

  • Oves M, Khan MS, Qari HA (2017) Ensifer adhaerens for heavy metal bioaccumulation, biosorption, and phosphate solubilization under metal stress condition. J Taiwan Inst Chem Eng 80:540–552

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Qari HA (2019) Chromium-reducing and phosphate-solubilizing Achromobacter xylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India. Int J Environ Sci Technol 16:6967–6984

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013a) Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Bioll Sci 20:21–129

    Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013b) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Paredes-Páliz KI, Caviedes MA, Doukkali B, Mateos-Naranjo E, Rodríguez-Llorente ID, Pajuelo E (2016) Screening beneficial rhizobacteria from Spartina maritima for phytoremediation of metal polluted salt marshes: comparison of gram-positive and gram-negative strains. Environ Sci Pollut Res Int 23:19825–19837

    Article  PubMed  Google Scholar 

  • Rajendran S, Priya TAK, Khoo KS, Hoang TK, Ng HS, Munawaroh HSH, Karaman C, Orooji Y, Show PL (2022) A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287:132369

    Article  CAS  PubMed  Google Scholar 

  • Rathi BS, Kumar PS (2021) Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ Pollut 280:116995

    Article  CAS  PubMed  Google Scholar 

  • Reshmy R, Philip E, Madhavan A, Pugazhendhi A, Sindhu R, Sirohi R, Awasthi MK, Pandey A, Binod P (2022) Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J Hazard Mater 424:127516

    Article  CAS  PubMed  Google Scholar 

  • Riaz N, Khan MS, Sabeen M, Zeb BS, Shaheen S, Hayat T (2022) Wastewater irrigation and plant growth: an insight into molecular studies. In: Sustainable plant nutrition under contaminated environments. Springer, Cham pp 57–74

  • Rizvi A, Ahmed M, Khan MS, Rajput VD, Umar S, Minkina T, Lee J (2022) Maize associated bacterial microbiome linked mitigation of heavy metal stress: a multidimensional detoxification approach. Environ Exp Bot 200:104911

    Article  CAS  Google Scholar 

  • Rizvi A, Khan MS (2019) Putative role of bacterial biosorbent in metal sequestration revealed by SEM-EDX and FTIR. Ind J Microbiol 59:246–249

    Article  Google Scholar 

  • Saha JK, Selladurai R, Coumar MV, Dotaniya ML, Kundu S and Patra AK (2017) Status of soil pollution in India. In: Soil pollution-an emerging threat to agriculture Springer, Singapore pp 271–315

  • Sharma P, Kumar S (2021) Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. Biores Technol 339:125589

    Article  CAS  Google Scholar 

  • Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim Cosmochim Acta 148:442–456

    Article  CAS  PubMed  Google Scholar 

  • Skrajnowska D, Bobrowska-Korczak B (2019) Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 11(10):2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Thakur IS (2012) Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent. Environ Technol 33:113–122

    Article  CAS  PubMed  Google Scholar 

  • Testa B, Kraemer SD (2009) The biochemistry of drug metabolism–an introduction: part 5 metabolism and bioactivity. Chem Biodiv 6(5):591–684

    Article  CAS  Google Scholar 

  • Thakur R, Srivastava S, Yadav S (2023a) Multitrait Pseudomonas sp. isolated from the rhizosphere of Bergenia ciliata acts as a growth-promoting bioinoculant for plants. Front Sustain Food Syst 7:1097587

    Article  Google Scholar 

  • Thakur R, Yadav S (2023b) Thermotolerant and halotolerant Streptomyces sp. isolated from Ajuga parviflora having biocontrol activity against Pseudomonas syringae and Xanthomonas campestris acts as a sustainable bioadditive in growth promotion of Cicer arietinum. Physiol Mol Plant Pathol 58:102059

    Article  Google Scholar 

  • Villegas CA, Cubo MT, Dampier VL, Bellogín RA, Camacho M, Temprano F, Espuny MR (2015) Rhizobial strains isolated from nodules of Medicago marina in southwest Spain are abiotic-stress tolerant and symbiotically diverse. Syst Appl Microbiol 38(7):506–514

    Article  Google Scholar 

  • Volland S, Lütz C, Michalke B, Lütz-Meind U (2012) Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. Aquat Toxicol 109:59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24(5):427–451

    Article  CAS  PubMed  Google Scholar 

  • Wrobel K, Escobosa ARC, Ibarra AAG, Garcia MM, Barrientos E, Wrobel K (2015) Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II). J Hazard Mater 300:144–152

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Zhu P, Jiao S, Jiang P, Zeng X, Luo Q, Wang L (2015) Identification of hexavalent chromium reducing bacteria Cr4-1 and optimization of its reduction conditions. Wei Sheng Yan Jiu 44(2):201–210

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the Deanship of Scientific Research (Grant Number: IFPHI-270-188-2020) at King Abdul Aziz University in Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MO, HQ and MSK in this manuscript. Desing of Work, Writing and communication; Artwork by MO. Editing and Software, Funding, Art work by HQ. Editing, Guidance and Desing of Work by MSK.

Corresponding author

Correspondence to Mohammad Oves.

Ethics declarations

Conflicts of interest

The authors assert that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Mohammad Irfan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oves, M., Qari, H.A. & Khan, M.S. Sinorhizobium saheli: Advancing Chromium Mitigation, Metal Adsorption, and Plant Growth Enhancement in Heavy Metal-Contaminated Environments. J Plant Growth Regul (2023). https://doi.org/10.1007/s00344-023-11123-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00344-023-11123-8

Keywords

Navigation