Skip to main content
Log in

The Destruction of Endogenous ABA Balance Caused by Fruit-specific SlNCED1-RNAi Affects Tomato Fruit Set

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The productivity of many horticultural crops is determined by the fruit set. A complex hormone network regulates fruit setting, but the involvement of abscisic acid (ABA) in this regulation is unknown. SlNCED1, which encodes 9-cis-epoxycarotenoid dioxygenase (NCED), a crucial enzyme in ABA production, was studied using RNA interference (RNAi) controlled by a fruit-specific E8 promoter to establish the significance of ABA in fruit setting. The wild-type (WT) tomato pistil's endogenous ABA content and SlNCED1 expression increased from six days before full bloom (− 6 DAF, days after full bloom) to the day of full bloom (0 DAF), and peaked at the − 2 DAF and − 1 DAF, respectively. The content of endogenous ABA and the expression level of SlNCED1 decreased gradually from 0 to 6 DAF. The expression of SlNCED1 in the pistil of transgenic tomato decreased by 40.2%–63.4% compared with WT. The content of ABA in the pistil of transgenic tomato decreased by 35.3%–73.3% compared with WT. In addition, SlNCED1-RNAi considerably reduced the expression of ABA signaling pathway genes SlPYL3 (ABA receptor), SlPP2C1/2/5 (type 2C protein phosphatase), and SnRK2.6 (subfamily 2 of SNF1-related kinases), which strongly repress the ABA signaling transduction. These changes resulted in the aberrant development of the pistil. The fruit setting rate of tomatoes declined drastically to 9.1%. All fruits were parthenocarpic with a considerable proportion of fruit of abnormal shape. In conclusion, the disruption of endogenous ABA balance caused by fruit-specific SlNCED1-RNAi affects tomato pistil development and fruit set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ariizumi T, Amagai M, Shibata D, Hatakeyama K, Watanabe M (2002) Comparative study of promoter activity of three anther-specific genes encoding lipid transfer protein, xyloglucan endotransglucosylase/hydrolase and polygalacturonase in transgenic Arabidopsis thaliana. Plant Cell Rep 21:90–96

    CAS  Google Scholar 

  • Azzi L, Deluche C, Gevaudant F, Frangne N, Delmas F, Hernould M, Chevalier C (2015) Fruit growth-related genes in tomato. J Exp Bot 66:1075–1086

    CAS  PubMed  Google Scholar 

  • Chandra Sekhar KN, Sawhney VK (1991) Role of ABA in stamen and pistil development in the normal and solanifolia mutant of tomato (Lycopersicon esculentum). Sex Plant Reprod 4:279–283

    Google Scholar 

  • Cong L, Wu T, Liu H, Wang H, Zhang H, Zhao G, Wen Y, Shi Q, Xu L, Wang Z (2020) CPPU may induce gibberellin-independent parthenocarpy associated with PbRR9 in ‘Dangshansu’pear. Hortic Res 7:1–13

    Google Scholar 

  • Dai S, Kai W, Liang B, Wang J, Jiang L, Du Y, Sun Y, Leng P (2018) The functional analysis of SlNCED1 in tomato pollen development. Cell Mol Life Sci 75:3457–3472

    CAS  PubMed  Google Scholar 

  • Di C, Yuan J, Wu Y, Li J, Lin H, Hu L, Zhang T, Qi Y, Gerstein M, Guo Y, Lu ZJ (2014) Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80:848–861

    CAS  PubMed  Google Scholar 

  • Dorcey E, Urbez C, Blázquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332

    CAS  PubMed  Google Scholar 

  • Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H (2017) Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS ONE 12:e0180003–e0180037

    PubMed  PubMed Central  Google Scholar 

  • Fenn MA, Giovannoni JJ (2020) Phytohormones in fruit development and maturation. Plant J 105:446–458

    Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S, Cutler SR, Sheen J, Rodriguez PL, Zhu J (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillaspy G, Ben-Davi H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    PubMed  PubMed Central  Google Scholar 

  • Ji K, Chen P, Sun L, Wang Y, Dai S, Li Q, Li P, Sun Y, Wu Y, Duan C, Leng P (2012) Non-climacteric ripening in strawberry fruit is linked to ABA, FaNCED2 and FaCYP707A1. Funct Plant Biol 39:351–357

    CAS  PubMed  Google Scholar 

  • Ji K, Kai W, Zhao B, Sun Y, Yuan B, Dai S, Li Q, Chen P, Wang Y, Pei Y, Wang H, Guo Y, Leng P (2014) SlNCED1 and SlCYP707A2: key genes involved in ABA metabolism during tomato fruit ripening. J Exp Bot 65:5243–5255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia HF, Chai YM, Li CL, Lu D, Luo JJ, Qin L, Shen YY (2011) Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol 157:188–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ju C, Van De Poel B, Cooper ED, Thierer JH, Gibbons T, Delwiche CF, Chang C (2015) Conservation of ethylene as a plant hormone over 450 million years of evolution. Nature Plants 1:14004–14010

    CAS  PubMed  Google Scholar 

  • Kai W, Fu Y, Wang J, Liang B, Li Q, Leng P (2019) Functional analysis of SlNCED1 in pistil development and fruit set in tomato (Solanum lycopersicum L.). Sci Rep 9:16943–16955

    PubMed  PubMed Central  Google Scholar 

  • Kim G, LeBlanc ML, Wafula EK, de Pamphilis C, Westwood JH (2014) Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 345:808–811

    CAS  PubMed  Google Scholar 

  • Kim J-S, Ezura K, Lee J, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H (2020) The inhibition of SlIAA9 mimics an increase in endogenous auxin and mediates changes in auxin and gibberellin signalling during parthenocarpic fruit development in tomato. J Plant Physiol 252:153238

    CAS  PubMed  Google Scholar 

  • Koenig D, Jimenezgomez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Tohge T, Bolger A, Schneeberger K, Ossowski S, Lanz C, Xiong G, Taylorteeples M, Brady SM, Pauly M, Weigel D, Usadel B, Fernie AR, Peng J, Sinha N, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 110:E2655–E2662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Li M, Liu B, Yan M, Yu X, Zi H, Liu R, Yamamuro C (2018) Interlinked regulatory loops of ABA catabolism and biosynthesis coordinate fruit growth and ripening in woodland strawberry. Proc Natl Acad Sci USA 115:e11542–e11550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo S, Miyatake K, Endo M, Urashimo S, Fukuoka H (2020) Loss of function of the Pad-1 aminotransferase gene, which is involved in auxin homeostasis, induces parthenocarpy in Solanaceae plants. Proc Natl Acad Sci USA 117:12784–12790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mesejo C, Yuste R, Reig C, Martínez-Fuentes A, Iglesias DJ, Muñoz-Fambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24

    CAS  PubMed  Google Scholar 

  • Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnol 4:4–13

    PubMed  PubMed Central  Google Scholar 

  • Nitsch LMC, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, Mariani C, Vriezen WH (2009) Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta 229:1335–1346

    CAS  PubMed  Google Scholar 

  • Orourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhdestone C, Tu ZJ, Allan DL, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    CAS  PubMed  Google Scholar 

  • Park S, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pattison RJ, Csukasi F, Zheng Y, Fei Z, van der Knaap E, Catalá C (2015) Comprehensive tissue-specific transcriptome analysis reveals distinct regulatory programs during early tomato fruit development. Plant Physiol 168:1684–1701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pesares P, Mizzotti C, Colombo M, Masiero S (2014) Genetic regulation and structural changes during tomato fruit development and ripening. Front Plant Sci 5:124–137

    Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

    CAS  PubMed  Google Scholar 

  • Ruiu F, Picarella ME, Imanishi S, Mazzucato A (2015) A transcriptomic approach to identify regulatory genes involved in fruit set of wild-type and parthenocarpic tomato genotypes. Plant Mol Biol 89:263–278

    CAS  PubMed  Google Scholar 

  • Serrani JC, Fos M, Atares A, Garcia-Martinez JL (2007) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J Plant Growth Regul 26:211–221

    CAS  Google Scholar 

  • Serrani JC, Ruiz-Rivero O, Fos M, Garcia-Martinez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934

    CAS  PubMed  Google Scholar 

  • Sharif R, Su L, Chen X, Qi X (2022) Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Horticult Res. https://doi.org/10.1093/hr/uhab024

    Article  Google Scholar 

  • Shen X, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H (2014) Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol 86:303–317

    CAS  PubMed  Google Scholar 

  • Sotelo-Silveira M, Marsch-Martínez N, de Folter S (2014) Unraveling the signal scenario of fruit set. Planta 239:1147–1158

    CAS  PubMed  Google Scholar 

  • Sun L, Zhang M, Ren J, Qi J, Zhang G, Leng P (2010) Reciprocity between abscisic acid and ethylene at the onset of berry ripening and after harvest. BMC Plant Biol 10:257–267

    PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang Y, Chen P, Ren J, Ji K, Li Q, Li P, Dai S, Leng P (2011) Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J Exp Bot 62:5659–5669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Sun Y, Zhang M, Wang L, Ren J, Cui M, Wang Y, Ji K, Li P, Li Q, Chen P, Dai S, Duan C, Wu Y, Leng P (2012) Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiol 158:283–298

    PubMed  PubMed Central  Google Scholar 

  • Tan S, Luschnig C, Friml J (2021) Pho-view of Auxin: reversible protein phosphorylation in auxin biosynthesis, transport and signalling. Mol Plant 14:151–165

    CAS  PubMed  Google Scholar 

  • Tang N, Den W, Hu G, Hu N, Li Z (2015) Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS ONE 10:e0125355

    PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106:17588–17593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voß U, Wilson MH, Kenobi K, Gould PD, Robertson FC, Peer WA, Lucas M, Swarup K, Casimiro I, Holman TJ, Wells DM, Péret B, Goh T, Fukaki H, Hodgman TC, Laplaze L, Halliday KJ, Ljung K, Murphy AS, Hall AJ, Webb AAR, Bennetta MJ (2015) The circadian clock rephrases during lateral root organ initiation in Arabidopsis thaliana. Nat Commun 6:7641–7649

    PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • Weng L, Zhao F, Li R, Xu C, Chen K, Xiao H (2015) The zinc finger transcription factor SlZFP2 negatively regulates abscisic acid biosynthesis and fruit ripening in tomato. Plant Physiol 167:931–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao HS, Lv LX, Chen ZT (2003) Dynamic changes of endogenous hormone in litchi (Litchi chinensis sonn.) pistil and stamen during flower development. J Environ Sci 9:279–283

    Google Scholar 

  • Zhou J, Sittmann J, Guo L, Xiao Y, Liu Z (2021) Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry. Physiol Plant 185:1059–1075

    CAS  Google Scholar 

  • Zou J, Abrams GD, Barton DL, Taylor DC, Pomeroy MK, Abrams SR (1995) Induction of lipid and oleosin biosynthesis by (+)-abscisic acid and its metabolites in microspore-derived embryos of Brassica napus L. cv Reston. Plant Physiol 108:563–571

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by grants from the National Natural Science Foundation of China (Grant No. 31902018, 32070344) and Natural Science Foundation of Shandong Province (Grant No. ZR2019PC016).

Author information

Authors and Affiliations

Authors

Contributions

SD and ZL: conceptual and experiment designs; XW, XC and SS: experiments were conducted; XW, MX and SD: data analysis performed; XZ, HW and XZ: reagents/materials/analysis tools were contributed. SD and ZL: The report was written. All the authors have commented, read and approved the final manuscript.

Corresponding authors

Correspondence to Zhenning Liu or Shengjie Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Author: Abdul Latif Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 703 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cui, X., Shang, S. et al. The Destruction of Endogenous ABA Balance Caused by Fruit-specific SlNCED1-RNAi Affects Tomato Fruit Set. J Plant Growth Regul 42, 7200–7214 (2023). https://doi.org/10.1007/s00344-023-11008-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-11008-w

Keywords

Navigation