Skip to main content

Advertisement

Log in

Interactions of Metal‐Based Engineered Nanoparticles with Plants: An Overview of the State of Current Knowledge, Research Progress, and Prospects

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nanotechnology is a potential technique for increasing agricultural output by producing nano-fertilizers, improving herbicide and pesticide efficacy, regulating soil fertility, managing wastewater, and detecting illnesses. It is also virtuous for industrial food processing since it boosts market value, improves nutritional and sensory properties, enhances safety, and boosts antibacterial protection. Moreover, nanotechnology may also assist farmers in reducing post-harvest losses by prolonging shelf life via the use of nanoparticles. Furthermore, nanoscience develops new ideas that lead to a better understanding of nanoparticles and their mechanisms of action in plants. Plants can grow and develop more effectively when the physiological-biochemical and molecular pathways involving nanoparticles in plants are understood. Scientists have developed a broad range of nanoparticles (NPs) such as Au, Ag, Pt, Fe, Cu, Cd, ZnO, and TiO2. At the same time, nanoscience gives us new ideas and diverts our intentions to attain some suitable mechanism mode for the functions of NPs in plants. The proper functionality of the physical, biological, and cellular mechanisms of NPs requires selected plant species to influence the variation in the different phases of plant growth and development. Although several reviews on engineered nanoparticles have been published in recent years, few have focused on their current applications, transport, interaction, and physio-chemical aspects of metal-based nanoparticles (MBNPs) and carbon-based nanoparticles (CBNPs) with crops. As a result, we evaluated the behaviors of (MBNPs) and (CBNPs) in agricultural systems, including absorption and translocation of MBNPs and CBNPs in crop plants, physiological and biochemical effects of MBNPs on plants, and factors influencing MBNPs and CBNPs' interactions on plants. This review will help glow nanotechnology by promoting scientific study on MBNPs and metal oxides nanoparticles MONPs and understanding the risks and advantages of their association with plants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data and materials are available for research purposes and reference.

References

  • Abd El-Mageed SA, Rady MM, Ali EF (2021) Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10:421

    PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29(4):1065–1073

    Google Scholar 

  • Achari GA, Kowshik M (2018) Recent developments on nanotechnology in agriculture: plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem 66(33):8647–8661

    CAS  PubMed  Google Scholar 

  • Adisa IO, Reddy Pullagurala VL, Rawat S, Hernandez-Viezcas JA, Dimkpa CO, Elmer WH, White JC, Peralta-Videa JR, Gardea-Torresdey JL (2018) Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). J Agric Food Chem 66(24):5959–5970

    CAS  PubMed  Google Scholar 

  • Ahmed B, Khan MS, Saquib Q, Al-Shaeri M, Musarrat J (2018) Interplay between engineered nanomaterials (ENMs) and edible plants: a current perspective. In: Faisal Mohammad, Saquib Quaiser, Alatar Abdulrahman A, Al-Khedhairy Abdulaziz A (eds) Phytotoxicity of nanoparticles. Springer, Cham, pp 63–102

    Google Scholar 

  • Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V, Viswanathan K, Fatoba PO (2019) Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Innov 14:100325

    Google Scholar 

  • Akter R, Rahman MH, Chowdhury MAR, Manirujjaman M, Elshenawy SE (2022) Advances of nanotechnology in plant development and crop protection. Applications of Computational Intelligence in Multi-Disciplinary Research. Elsevier, Amsterdam, pp 143–157

    Google Scholar 

  • Alabdallah NM, Hasan MM (2021) Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci 28(10):5631–5639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Mehmood A, Khan N (2021) Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater. https://doi.org/10.1155/2021/6677616

    Article  Google Scholar 

  • Al-Juthery HWA, Lahmod NR, Al-Taee RAHG (2021) Intelligent, nano-fertilizers: a new technology for improvement nutrient use efficiency (Article Review). IOP Conf Series: Earth Environ Sci 735(1):12086

    Google Scholar 

  • An J, Hu P, Li F, Wu H, Shen Y, White JC, Tian X, Li Z, Giraldo JP (2020) Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano 7(8):2214–2228

    CAS  Google Scholar 

  • An C, Sun C, Li N, Huang B, Jiang J, Shen Y, Wang C, Zhao X, Cui B, Wang C (2022) Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnol 20(1):1–19

    Google Scholar 

  • Aqeel U, Aftab T, Khan MMA, Naeem M, Khan MN (2021) A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Chemosphere 291:132672

    PubMed  Google Scholar 

  • Ashraf SA, Siddiqui AJ, Abd Elmoneim OE, Khan MI, Patel M, Alreshidi M, Moin A, Singh R, Snoussi M, Adnan M (2021) Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Sci Total Environ 768:144990

    CAS  PubMed  Google Scholar 

  • Balasubramani G, Ramkumar R, Krishnaveni N, Pazhanimuthu A, Natarajan T, Sowmiya R, Perumal P (2015) Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn. J Trace Elem Med Biol 30:83–89

    CAS  PubMed  Google Scholar 

  • Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S (2022) The dichotomy of nanotechnology as the cutting edge of agriculture: nano-farming as an asset versus nanotoxicity. Chemosphere 288:132533

    CAS  PubMed  Google Scholar 

  • Chahardoli A, Sharifan H, Karimi N, Kakavand SN (2022) Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO2NPs) in Nigella arvensis L. Sci Total Environ 806:151222

    CAS  PubMed  Google Scholar 

  • Chaudhary RG, Bhusari GS, Tiple AD, Rai AR, Somkuvar SR, Potbhare AK, Lambat TL, Ingle PP, Abdala AA (2019) Metal/metal oxide nanoparticles: toxicity, applications, and future prospects. Curr Pharm Des 25(37):4013–4029

    CAS  PubMed  Google Scholar 

  • Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1(6):1–30

    Google Scholar 

  • Chen H (2018) Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem Speciat Bioavailab 30(1):123–134

    CAS  Google Scholar 

  • Chhipa H, Joshi P (2016) Nanofertilisers, nanopesticides and nanosensors in agriculture. In: Ranjan Shivendu, Dasgupta Nandita, Lichtfouse Eric (eds) Nanoscience in Food and Agriculture 1. Springer, Cham, pp 247–282

    Google Scholar 

  • Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L (2018) Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf 154:237–244

    CAS  PubMed  Google Scholar 

  • d’Amora M, Schmidt TJN, Konstantinidou S, Raffa V, De Angelis F, Tantussi F (2022) Effects of metal oxide nanoparticles in zebrafish. Oxid Med Cell Longev. https://doi.org/10.1155/2022/3313016

    Article  PubMed  PubMed Central  Google Scholar 

  • Dağhan H (2018) Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Appl Ecol Environ Res. https://doi.org/10.15666/aeer/1605_68736883

    Article  Google Scholar 

  • Das A, Das B (2019) Nanotechnology a potential tool to mitigate abiotic stress in crop plants. Abiotic Biotic Stress Plants. https://doi.org/10.5772/intechopen.83562

    Article  Google Scholar 

  • de Almeida GHG, de Cássia Siqueira-Soares R, Mota TR, de Oliveira DM, Abrahão J, de Paiva Foletto-Felipe M, Dos Santos WD, Ferrarese-Filho O, Marchiosi R (2021) Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth. Plant Physiol Biochem 159:335–346

    CAS  PubMed  Google Scholar 

  • Deshmukh SP, Patil SM, Mullani SB, Delekar SD (2019) Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng, C 97:954–965

    CAS  Google Scholar 

  • Donia DT, Carbone M (2019) Fate of the nanoparticles in environmental cycles. Int J Environ Sci Technol 16(1):583–600

    CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    CAS  PubMed  Google Scholar 

  • Dziergowska K, Michalak I (2022) The role of nanoparticles in sustainable agriculture. Smart Agrochemicals for Sustainable Agriculture. Elsevier, Amsterdam, pp 225–278

    Google Scholar 

  • El-Gazzar N, Almaary K, Ismail A, Polizzi G (2020) Influence of Funneliformis mosseae enhanced with titanium dioxide nanoparticles (TiO2NPs) on Phaseolus vulgaris L. under salinity stress. PLoS One. https://doi.org/10.1371/journal.pone.0235355

    Article  PubMed  PubMed Central  Google Scholar 

  • EL-Kady, M.E., El-Boray, M.S., Shalan, A.M. and Mohamed, L.M, (2017) Effect of silicon dioxide nanoparticles on growth improvement of banana shoots in vitro within rooting stage. Journal of Plant Production 8(9):913–916

    Google Scholar 

  • El-Saadony MT, Desoky E-SM, Saad AM, Eid RSM, Selem E, Elrys AS (2021) Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J Environ Sci 106:1–14

    CAS  Google Scholar 

  • El-Shazoly RM, Amro A (2019) Comparative physiological and biochemial effects of CuO NPs and bulk CuO phytotoxicity onto the maize (Zea mays) seedlings. Global NEST J 21(3):276–289

    CAS  Google Scholar 

  • Ersan G, ERSAN M (2021) Are carbon-based nanomaterials for the adsorption of organic contaminants perform better than nanoplastics (NPs) and microplastics (MPs)? J Int Environ Appl Sci 16(2):72–81

    CAS  Google Scholar 

  • Etesami H, Fatemi H, Rizwan M (2021) Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: a review. Ecotoxicol Environ Saf 225:112769

    CAS  PubMed  Google Scholar 

  • García-Gómez C, Fernández MD (2019) Impacts of metal oxide nanoparticles on seed germination, plant growth and development. Comprehensive Analytical Chemistry. Elsevier, Amsterdam, pp 75–124

    Google Scholar 

  • Gerasymova I, Maksymchuk B, Bilozerova M, Chernetska Y, Matviichuk T, Solovyov V, Maksymchuk I (2019) Forming professional mobility in future agricultural specialists: the sociohistorical context. Rom J Multidimensional Edu/Revis Romaneasca Pentru Edu Multidimens. https://doi.org/10.18662/rrem/195

    Article  Google Scholar 

  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020) Titanium dioxide nanoparticles (TiO2NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci Rep 10(1):1–14

    Google Scholar 

  • Gottardo S, Mech A, Drbohlavová J, Małyska A, Bøwadt S, Sintes JR, Rauscher H (2021) Towards safe and sustainable innovation in nanotechnology: state-of-play for smart nanomaterials. NanoImpact 21:100297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruyer N, Dorais M, Bastien C, Dassylva N, Triffault-Bouchet G (2013) Interaction between silver nanoparticles and plant growth. Int Symposium New Technol Environ Contr, Energy-Saving Crop Prod Greenh Plant 1037:795–800

    Google Scholar 

  • Haghighi M, Teixeira da Silva JA (2014) The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol 17(4):221–227

    Google Scholar 

  • Handa M, Dey M, Saxena A, Beg S, Rahman M, Shukla R (2022) Application of nanotechnology assisted devices in cancer treatment. Nanotherapeutics in Cancer Vaccination and Challenges. Elsevier, Amsterdam, pp 77–94

    Google Scholar 

  • Hasan M, Mehmood K, Mustafa G, Zafar A, Tariq T, Hassan SG, Loomba S, Zia M, Mazher A, Mahmood N (2021) Phytotoxic evaluation of phytosynthesized silver nanoparticles on lettuce. Coatings 11(2):225

    CAS  Google Scholar 

  • He X, Deng H, Hwang H (2019) The current application of nanotechnology in food and agriculture. J Food Drug Anal 27(1):1–21

    PubMed  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of’in vitro’cultures and organogenic regeneration of banana. Aust J Crop Sci 8(4):612–624

    CAS  Google Scholar 

  • Hernandez Sanchez MJ (2021) Removal of 200 mg/L of dissolved methyl orange through photocatalysis with TiO2 nanoparticles.

  • Hoffmann J, Berni R, Hausman J-F, Guerriero G (2020) A review on the beneficial role of silicon against salinity in non-accumulator crops: tomato as a model. Biomolecules 10(9):1284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain A, Kerry RG, Farooq M, Abdullah N, Tofazzal Islam M (2020) Application of nanotechnology for sustainable crop production systems. In: Thangadurai Devarajan, Sangeetha Jeyabalan, Prasad Ram (eds) Nanotechnology for food, agriculture, and environment. Springer, Cham, pp 135–159

    Google Scholar 

  • Hu J, Wu X, Wu F, Chen W, Zhang X, White JC, Li J, Wan Y, Liu J, Wang X (2020) TiO2 nanoparticle exposure on lettuce (Lactuca sativa L.): dose-dependent deterioration of nutritional quality. Environ Sci: Nano 7(2):501–513

    CAS  Google Scholar 

  • Hu Y, Zhang P, Zhang X, Liu Y, Feng S, Guo D, Nadezhda T, Song Z, Dang X (2021) Multi-wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. J Agric Food Chem 69(17):4981–4991

    CAS  PubMed  Google Scholar 

  • Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26(8):7579–7588

    CAS  Google Scholar 

  • Iderawumi AM, Yusuff MA (2021) Effects of nanoparticles on improvement in quality and shelf life of fruits and vegetables. J. Plant Biol. Crop Res 4:2–7

    Google Scholar 

  • Iqbal MA (2019) Nano-fertilizers for sustainable crop production under changing climate: a global perspective. Sustain Crop Prod 8:1–13

    CAS  Google Scholar 

  • Iqbal MS, Singh AK, Singh SP, Ansari MI (2020) Nanoparticles and plant interaction with respect to stress response. In: Bhushan Indu, Singh Vivek Kumar, Tripathi Durgesh Kumar (eds) Nanomaterials and environmental biotechnology. Springer, Cham, pp 1–15

    Google Scholar 

  • Iravani R, An C, Adamian Y, Mohammadi M (2022) A review on the use of nanoclay adsorbents in environmental pollution control. Water Air Soil Pollut 233(4):1–17

    Google Scholar 

  • Islam F, Shohag S, Uddin MJ, Islam MR, Nafady MH, Akter A, Mitra S, Roy A, Emran TB, Cavalu S (2022) Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials 15(6):2160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafarzadeh S, Nafchi AM, Salehabadi A, Oladzad-Abbasabadi N, Jafari SM (2021) Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv Coll Interface Sci 291:102405

    CAS  Google Scholar 

  • Javed Z, Dashora K, Mishra M, Fasake VD, Srivastva A (2019) Effect of accumulation of nanoparticles in soil health-a concern on future. Front Nanosci Nanotechnol 5:1–9

    Google Scholar 

  • Javed MT, Saleem MH, Aslam S, Rehman M, Iqbal N, Begum R, Ali S, Alsahli AA, Alyemeni MN, Wijaya L (2020) Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol Biochem 157:23–37

    CAS  PubMed  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 45:423–429

    CAS  Google Scholar 

  • Ji Y, Zhou Y, Ma C, Feng Y, Hao Y, Rui Y, Wu W, Gui X, Han Y, Wang Y (2017) Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol Biochem 110:82–93

    CAS  PubMed  Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. https://doi.org/10.1155/2018/1062562

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Song Y, Kanwar MK, Ahammed GJ, Shao S, Zhou J (2021) Phytonanotechnology applications in modern agriculture. J Nanobiotechnol 19(1):1–20

    Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14(6):532–540

    CAS  PubMed  Google Scholar 

  • Kardavan Ghabel V, Karamian R (2020) Effects of TiO2 nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Botanica Croatica 79(2):137–147

    Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63(1):119–123

    CAS  Google Scholar 

  • Khalil R, ElSayed N, Hashem HA (2021) Nanoparticles As a New Promising Tool to Increase Plant Immunity Against Abiotic Stress. In: Faizan Mohammad, Hayat Shamsul, Fangyuan Yu (eds) Sustainable Agriculture Reviews 53. Springer, Cham, pp 61–91

    Google Scholar 

  • Khan T, Ullah N, Khan MA, Nadhman A (2019) Plant-based gold nanoparticles; a comprehensive review of the decade-long research on synthesis, mechanistic aspects and diverse applications. Adv Coll Interface Sci 272:102017

    CAS  Google Scholar 

  • Kolenčík M, Nemček L, Šebesta M, Urík M, Ernst D, Kratošová G, Konvičková Z (2021) Effect of TiO2 as Plant Growth-Stimulating Nanomaterial on Crop Production. Plant Responses to Nanomaterials. Springer, Cham, pp 129–144

    Google Scholar 

  • Kothari, R., & Wani, K. A. (2021). Environmentally Friendly Slow Release Nano-Chemicals in Agriculture. In Research Anthology on Synthesis, Characterization, and Applications of Nanomaterials (pp. 409–425). IGI Global. https://doi.org/10.4018/978-1-7998-8591-7.ch019

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):651–658

    CAS  Google Scholar 

  • Kumar A, Choudhary A, Kaur H, Mehta S, Husen A (2021) Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol 19(1):1–25

    Google Scholar 

  • Labeeb M, Badr A, Haroun SA, Mattar MZ, El-Kholy AS, El-Mehasseb IM (2020) Ecofriendly synthesis of silver nanoparticles and their effects on early growth and cell division in roots of green pea (Pisum sativum L.). Gesunde Pflanzen 72(2):113–127

    CAS  Google Scholar 

  • Laughton S, Laycock A, von der Kammer F, Hofmann T, Casman EA, Rodrigues SM, Lowry GV (2019) Persistence of copper-based nanoparticle-containing foliar sprays in Lactuca sativa (lettuce) characterized by spICP-MS. J Nanopart Res 21(8):1–13

    CAS  Google Scholar 

  • Li Y, Li W, Zhang H, Liu Y, Ma L, Lei B (2020) Amplified light harvesting for enhancing Italian lettuce photosynthesis using water soluble silicon quantum dots as artificial antennas. Nanoscale 12(1):155–166

    PubMed  Google Scholar 

  • Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, Tang J, Liu W (2020) Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere 239:124794

    CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  PubMed  Google Scholar 

  • Liu S, Wang C, Hou J, Wang P, Miao L (2020) Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors. Water Res 171:115436

    CAS  PubMed  Google Scholar 

  • Lu PJ, Fang SW, Cheng WL, Huang SC, Huang MC, Cheng HF (2018) Characterization of titanium dioxide and zinc oxide nanoparticles in sunscreen powder by comparing different measurement methods. J Food Drug Anal 26(3):1192–1200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Xie C, He X, Zhang B, Yang J, Sun M, Luo W, Feng S, Zhang J, Wang G (2020) Effects of ceria nanoparticles and CeCl3 on plant growth, biological and physiological parameters, and nutritional value of soil grown common bean (Phaseolus vulgaris). Small 16(21):1907435

    CAS  Google Scholar 

  • Machado TO, Grabow J, Sayer C, de Araújo PHH, Ehrenhard ML, Wurm FR (2022) Biopolymer-based nanocarriers for sustained release of agrochemicals: a review on materials and social science perspectives for a sustainable future of agri-and horticulture. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2022.102645

    Article  PubMed  Google Scholar 

  • Madani M, Hosny S, Alshangiti DM, Nady N, Alkhursani SA, Alkhaldi H, Al-Gahtany SA, Ghobashy MM, Gaber GA (2022) Green synthesis of nanoparticles for varied applications: green renewable resources and energy-efficient synthetic routes. Nanotechnol Rev 11(1):731–759

    CAS  Google Scholar 

  • Maghsoodi MR, Lajayer BA, Hatami M, Mirjalili MH (2019) Challenges and opportunities of nanotechnology in plant-soil mediated systems: beneficial role, phytotoxicity, and phytoextraction. Advances in Phytonanotechnology. Elsevier, Amsterdam, pp 379–404

    Google Scholar 

  • Mahapatra DM, Satapathy KC, Panda B (2022) Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. Sci Total Environ 803:149990

    CAS  PubMed  Google Scholar 

  • Manikandan S, Subbaiya R, Saravanan M, Ponraj M, Selvam M, Pugazhendhi A (2022) A critical review of advanced nanotechnology and hybrid membrane based water recycling, reuse, and wastewater treatment processes. Chemosphere 289:132867

    CAS  PubMed  Google Scholar 

  • Maswada HF, Djanaguiraman M, Prasad PVV (2018) Seed treatment with nano-iron (III) oxide enhances germination, seeding growth and salinity tolerance of sorghum. J Agron Crop Sci 204(6):577–587

    CAS  Google Scholar 

  • Mathur P, Roy S (2020) Nanosilica facilitates silica uptake, growth and stress tolerance in plants. Plant Physiol Biochem 157:114–127

    CAS  PubMed  Google Scholar 

  • Matić, D. (2018). Fitotoksični učinci nanočestica srebra stabiliziranih s različitim omotačima na duhan (Nicotiana tabacum L.). University of Zagreb. Faculty of Science. Department of Biology.

  • Matras E, Gorczyca A, Pociecha E, Przemieniecki SW, Oćwieja M (2022) Phytotoxicity of silver nanoparticles with different surface properties on monocots and dicots model plants. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-022-00760-9

    Article  Google Scholar 

  • Melinte V, Buruiana T, Rosca I, Chibac AL (2019) TiO2-Based photopolymerized hybrid catalysts with visible light catalytic activity induced by in situ generated Ag/Au NPs. Chem Select 4(17):5138–5149

    CAS  Google Scholar 

  • Milewska-Hendel A, Gawecki R, Zubko M, Stróz D, Kurczynska E (2016) Diverse influence of nanoparticles on plant growth with a particular emphasis on crop plants. Acta Agrobotanica. https://doi.org/10.5586/aa.1694

    Article  Google Scholar 

  • Molaverdi M, Golchin A, Varasteh Khanlari Z (2020) The effect of different amounts of natural biocher and poultry manure on zinc and cadmium in a contaminated soil. J Water Soil Conserv 27(4):89–108

    Google Scholar 

  • Mostafa M, Almoammar H, Abd-Elsalam KA (2019) Zinc-based nanostructures in plant protection applications. In: Abd-Elsalam Kamel A, Prasad Ram (eds) Nanobiotechnology Applications in Plant Protection. Springer, Cham, pp 49–83

    Google Scholar 

  • Muraisi, L., Hariyadi, D. M., Athiyah, U., & Pathak, Y. (2022) Eco‐friendly Nanotechnology in Agriculture: Opportunities, Toxicological Implications, and Occupational Risks. Sustainable Nanotechnology: Strategies, Products, and Applications, 287–296.

  • Mushtaq YK (2011) Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination. J Environ Sci Health, Part A 46(14):1732–1735

    CAS  Google Scholar 

  • Nair R (2016) Effects of nanoparticles on plant growth and development. In: Chittaranjan Kole D, Kumar Sakthi, Khodakovskaya Mariya V (eds) Plant nanotechnology. Springer, Cham, pp 95–118

    Google Scholar 

  • Nasr MS, Esmaeilnezhad E, Choi HJ (2021) Effect of silicon-based nanoparticles on enhanced oil recovery. J Taiwan Inst Chem Eng 122:241–259

    Google Scholar 

  • Nazneen H, Rather GA, Ali A, Chakravorty A (2022) The Role of Plant-Mediated Biosynthesised Nanoparticles in Agriculture. In: Bandh Suhaib A (ed) Sustainable Agriculture. Springer, Cham, pp 97–117

    Google Scholar 

  • Nourozi E, Hosseini B, Maleki R, Mandoulakani BA (2021) Inductive effect of titanium dioxide nanoparticles on the anticancer compounds production and expression of rosmarinic acid biosynthesis genes in Dracocephalum kotschyi transformed roots. Plant Physiol Biochem 167:934–945

    CAS  PubMed  Google Scholar 

  • Omar, Z. (2017). The safety and toxicity of MPA-CdTe quantum dots in legume plants.

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907

    CAS  PubMed  Google Scholar 

  • Parray JA, Mir MY, Shameem N (2021) Nano-technological Intervention in Agricultural Productivity. John Wiley & Sons, Hoboken

    Google Scholar 

  • Prakash V, Peralta-Videa J, Tripathi DK, Ma X, Sharma S (2021) Recent insights into the impact, fate and transport of cerium oxide nanoparticles in the plant-soil continuum. Ecotoxicol Environ Saf 221:112403

    CAS  PubMed  Google Scholar 

  • Prakash M, Kavitha HP, Abinaya S, Vennila JP, Lohita D (2022) Green synthesis of bismuth based nanoparticles and its applications-A review. Sustain Chem Pharm 25:100547

    CAS  Google Scholar 

  • Privitera A, Ruggiero L, Venditti I, Laverdura UP, Tuti S, De Felicis D, Mastro SL, Duranti L, Di Bartolomeo E, Gasperi T (2022) One step nanoencapsulation of corrosion inhibitors for gradual release application. Mater Today Chem 24:100851

    CAS  Google Scholar 

  • Qureshi A, Singh DK, Dwivedi S (2018) Nano-fertilizers: a novel way for enhancing nutrient use efficiency and crop productivity. Int J Curr Microbiol App Sci 7(2):3325–3335

    Google Scholar 

  • Radwan EK, El-Naggar ME, Abdel-Karim A, Wassel AR (2021) Multifunctional 3D cationic starch/nanofibrillated cellulose/silver nanoparticles nanocomposite cryogel: synthesis, adsorption, and antibacterial characteristics. Int J Biol Macromol 189:420–431

    CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  PubMed  Google Scholar 

  • Rai PK, Kumar V, Lee S, Raza N, Kim K-H, Ok YS, Tsang DCW (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    CAS  PubMed  Google Scholar 

  • Raja RK, Hazir S, Balasubramani G, Sivaprakash G, Obeth ESJ, Boobalan T, Pugazhendhi A, Raj RHK, Arun A (2022) Green nanotechnology for the environment. Handbook of Microbial Nanotechnology. Elsevier, Amsterdam, pp 461–478

    Google Scholar 

  • Rajput VD, Minkina T, Kumari A, Singh VK, Verma KK, Mandzhieva S, Sushkova S, Srivastava S, Keswani C (2021) Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants 10(6):1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkumar S, Thiruvengadam M, Pooja T, Thatchayani GS, Alwin JD, Harish BS, Deva S, Keerdhana R, Chithraanjane RN, Nile SH (2022) Effects of nanoparticles on phytotoxicity, cytotoxicity, and genotoxicity in agricultural crops. Nano-enabled Agrochemicals in Agriculture. Elsevier, Amsterdam, pp 325–344

    Google Scholar 

  • Rana KL, Kour D, Yadav N, Yadav AN (2020) Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. Microbial endophytes. Elsevier, Amsterdam, pp 231–262

    Google Scholar 

  • Rath RC, Acharya P, Laly A, Rout BC (2017) Role of nano technology on agri-green product production process: emerging needs and challanges. Int J Adv Res Sci Eng Technol 8(1):34–50

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    CAS  PubMed  Google Scholar 

  • Rossi LM, Costa NJS, Silva FP, Goncalves RV (2013) Magnetic nanocatalysts: supported metal nanoparticles for catalytic applications. Nanotechnol Rev 2(5):597–614

    CAS  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann Univ Mariae Curie-Sklodowska, Sectio C-Biologia 69(2):39

    Google Scholar 

  • Sabir S, Arshad M, Chaudhari SK (2014) Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. https://doi.org/10.1155/2014/925494

    Article  Google Scholar 

  • Sadati Valojai ST, Niknejad Y, Fallah Amoli H, Barari Tari D (2021) Response of rice yield and quality to nano-fertilizers in comparison with conventional fertilizers. J Plant Nutr 44(13):1971–1981

    CAS  Google Scholar 

  • Salama A (2022) The development of a novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial effect. Pharmacia 69(1):255–260

    CAS  Google Scholar 

  • Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L (2020) Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf (Hibiscus cannabinus L.) seedlings. PeerJ. https://doi.org/10.7717/peerj.8321

    Article  PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Rehman M, Kamran M, Afzal J, Noushahi HA, Liu L (2020b) Investigating the potential of different jute varieties for phytoremediation of copper-contaminated soil. Environ Sci Pollut Res 27(24):30367–30377

    CAS  Google Scholar 

  • Saleem MH, Wang X, Ali S, Zafar S, Nawaz M, Adnan M, Fahad S, Shah A, Alyemeni MN, Hefft DI (2021) Interactive effects of gibberellic acid and NPK on morpho-physio-biochemical traits and organic acid exudation pattern in coriander (Coriandrum sativum L.) grown in soil artificially spiked with boron. Plant Physiol Biochem 167:884–900

    CAS  PubMed  Google Scholar 

  • Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SE-D, Eid AM, Shaheen TI, Elkelish A, Fouda A (2020) Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10(10):2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanan-Mishra N, Varanasi SPRM, Mukherjee SK (2013) Micro-regulators of auxin action. Plant Cell Rep 32(6):733–740

    CAS  PubMed  Google Scholar 

  • Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A (2020) Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10(2):292

    PubMed  PubMed Central  Google Scholar 

  • Saravanadevi, K., Devi, N. R., Dorothy, R., Joany, R. M., Rajendran, S., & Nguyen, T. A. (2022). Nanotechnology for agriculture: an introduction. In Nanosensors for Smart Agriculture (pp. 3–23). Elsevier

  • Sarraf M, Vishwakarma K, Kumar V, Arif N, Das S, Johnson R, Janeeshma E, Puthur JT, Aliniaeifard S, Chauhan DK (2022) Metal/Metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plants 11(3):316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satti SH, Raja NI, Javed B, Akram A, Mashwani Z-R, Ahmad MS, Ikram M (2021) Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 16(2):e0246880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10(2):1–25. https://doi.org/10.3390/plants10020259

    Article  CAS  Google Scholar 

  • Shah T, Latif S, Saeed F, Ali I, Ullah S, Alsahli AA, Jan S, Ahmad P (2021) Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L) under salinity stress. J King Saud Univ-Sci. https://doi.org/10.1016/j.jksus.2020.10.004

    Article  Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi-Rad, J., Sharifi-Rad, M., & Teixeira da Silva, J. A. (2018). Morphological, Physiological and Biochemical Respon ses of Crops (Zea mays L., Phaseolus vulgaris L.), Medicinal Plants (Hyssopus officinalis L., Nigella sativa L.), and Weeds (Amaranthus retroflexus L., Taraxacum officinale FH Wigg) Exposed to SiO 2 Nano.

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L: a morphological study. Nanotoxicology 6(3):241–248

    CAS  PubMed  Google Scholar 

  • Shukla PK, Misra P, Kole C (2016) Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants. Plant Nanotechnol. https://doi.org/10.1007/978-3-319-42154-4_8

    Article  Google Scholar 

  • Siddiqi KS, Husen A (2021) Plant response to silver nanoparticles: a critical review. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2021.1975091

    Article  PubMed  Google Scholar 

  • Siddiqui H, Singh P, Arif Y, Sami F, Naaz R, Hayat S (2022) Role of Micronutrients in Providing Abiotic Stress Tolerance. In: Tabrez Shams, Abdul Malik Khan (eds) Microbial Biofertilizers and Micronutrient Availability: The Role of Zinc in Agriculture and Human Health. Springer, Cham, pp 115–136

    Google Scholar 

  • Singh P, Kim Y-J, Zhang D, Yang D-C (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    CAS  PubMed  Google Scholar 

  • Singh A, Singh N, áB, Afzal, S., Singh, T., & Hussain, I. (2018) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53(1):185–201

    CAS  Google Scholar 

  • Singh A, Tiwari S, Pandey J, Lata C, Singh IK (2021a) Role of nanoparticles in crop improvement and abiotic stress management. J Biotechnol 337:57–70

    CAS  PubMed  Google Scholar 

  • Singh P, Arif Y, Siddiqui H, Sami F, Zaidi R, Azam A, Alam P, Hayat S (2021) Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicol Environ Saf 213:112020–45845454

    CAS  PubMed  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  PubMed  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai Mahendra, Ribeiro Caue, Mattoso Luiz, Duran Nelson (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 81–101

    Google Scholar 

  • Solano R, Patiño-Ruiz D, Tejeda-Benitez L, Herrera A (2021) Metal-and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res 28(14):16962–16981

    CAS  Google Scholar 

  • Soni V, Khosla A, Singh P, Nguyen V-H, Van Le Q, Selvasembian R, Hussain CM, Thakur S, Raizada P (2022) Current perspective in metal oxide based photocatalysts for virus disinfection: a review. J Environ Manag 308:114617

    CAS  Google Scholar 

  • Staloch BEK, Niero H, de Freitas RC, Ballone P, Rodrigues-Costa F, Trivella DBB, Dessen A, da Silva MAC, de Souza Lima AO (2022) Draft genome sequence of Psychrobacter nivimaris LAMA 639 and its biotechnological potential. Data Brief 41:107927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sunday OE, Chidike ETP, Mao G, Chen Y, Feng W, Wu X (2021) Nano-enabled agrochemicals/materials: potential human health impact, risk assessment, management strategies and future prospects. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.118722

    Article  Google Scholar 

  • Tighe-Neira R, Gonzalez-Villagra J, Nunes-Nesi A, Inostroza-Blancheteau C (2022) Impact of nanoparticles and their ionic counterparts derived from heavy metals on the physiology of food crops. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2021.12.036

    Article  PubMed  Google Scholar 

  • Tripathi SK, Kumar R, Shukla SK, Qidwai A, Dikshit A (2018) Exploring application of nanoparticles in production of biodiesel. In: Srivastava Neha, Srivastava Manish, Himanshu Pandey PK, Mishra Pramod W, Ramteke, (eds) Green Nanotechnology for Biofuel Production. Springer, Cham, pp 141–153

    Google Scholar 

  • Ulhassan Z, Bhat JA, Zhou W, Senan AM, Alam P, Ahmad P (2022) Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: a review. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.119038

    Article  PubMed  Google Scholar 

  • Vasanthi N, Saleena LM, Raj SA (2014) Silicon in crop production and crop protection-A review. Agric Rev 35(1):14–23

    Google Scholar 

  • Verma DK, Patel S, Kushwah KS (2021) Effects of nanoparticles on seed germination growth, phytotoxicity and crop improvement. Agricl Rev. https://doi.org/10.18805/ag.R-1964

    Article  Google Scholar 

  • Wahab A, Abdi G, Saleem MH, Ali B, Ullah S, Shah W, Mumtaz S, Yasin G, Muresan CC, Marc RA (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11(13):1620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang A, Zheng Y, Peng F (2014) Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. J Spectrosc. https://doi.org/10.1155/2014/169245

    Article  Google Scholar 

  • Wang J, Li M, Feng J, Yan X, Chen H, Han R (2021a) Effects of TiO2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. Chemosphere 281:130809

    CAS  PubMed  Google Scholar 

  • Wang Y, Xie Z, Wang X, Peng X, Zheng J (2021b) Fluorescent carbon-dots enhance light harvesting and photosynthesis by overexpressing PsbP and PsiK genes. J Nanobiotechnol 19(1):1–14

    Google Scholar 

  • Williford J-M, Wu J, Ren Y, Archang MM, Leong KW, Mao H-Q (2014) Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng 16:347–370

    CAS  PubMed  Google Scholar 

  • Yang P, Xu Q, Jin S, Zhao Y, Lu Y, Xu X, Yu S (2012) Synthesis of Fe3O4@ phenol formaldehyde resin core–shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. Chem–A Eur J 18(4):1154–1160

    CAS  Google Scholar 

  • Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P (2020) Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 15(1):1–14

    Google Scholar 

  • Zaheer IE, Ali S, Saleem MH, Imran M, Alnusairi GSH, Alharbi BM, Riaz M, Abbas Z, Rizwan M, Soliman MH (2020) Role of iron–lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiol Biochem 155:70–84

    CAS  PubMed  Google Scholar 

  • Załęska-Radziwiłł M, Doskocz N, Affek K, Muszyński A (2020) Effect of aluminum oxide nanoparticles on aquatic organisms–a microcosm study. Desalin Water Treat 195:286–296

    Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62(13):2752–2759

    CAS  PubMed  Google Scholar 

  • Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Xing B, Wang Z, Ji R (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68(7):1935–1947

    CAS  PubMed  Google Scholar 

  • Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y (2021) ROS-responsive nanoparticle as a berberine carrier for OHC-targeted therapy of noise-induced hearing loss. ACS Appl Mater Interfaces 13(6):7102–7114

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We highly thank Dr. Mohsin Ali for his technical assistance.

Funding

No funding was provided for the present study.

Author information

Authors and Affiliations

Authors

Contributions

MHS, MFBM, and AW conceived and designed the article, and HA and AM critically revised the manuscript and approved the final version. MIAR and GA wrote the manuscript. MHS, HA, MFBM, AW, and MIAR critically edited and revised the manuscript.

Corresponding authors

Correspondence to Muhammad Hamzah Saleem or Humera Aziz.

Ethics declarations

Competing Interests

There is no competing interest in the publication of this manuscript.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Written consent was sought from each author to publish the manuscript.

Additional information

Handling Editor: Durgesh Kumar Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahab, A., Munir, A., Saleem, M.H. et al. Interactions of Metal‐Based Engineered Nanoparticles with Plants: An Overview of the State of Current Knowledge, Research Progress, and Prospects. J Plant Growth Regul 42, 5396–5416 (2023). https://doi.org/10.1007/s00344-023-10972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-023-10972-7

Keywords

Navigation