Skip to main content

Advertisement

Log in

Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant abiotic stresses endanger crop production and food security to a growing degree under the present climate change scenario. This calls for effective measures to be deployed to increase the level of agricultural production to meet the needs of soaring world population. Application of osmo-protectants and soluble sugars were reported to counter abiotic stresses in many crop species. Trehalose (Tre) is one such non-reducing sugar found in bacteria and yeasts, where it serves as source of carbon, and in higher plants and animals, where it acts as osmo-protectant. Tre is involved in various physiological, biochemical and molecular mechanisms associated with plant growth, development and defense against drought, salinity, cold, heat, UV rays, nutrient deficiency and heavy metal stresses. It helps to maintain cellular integrity under stress by upgrading the antioxidant defense system. However, Tre amounts are lower than those needed to assure adequate plant stress tolerance. Interestingly, Tre supplementation up-regulates stress response genes and induces the accumulation of various osmolytes, including proline, glycine betaine and soluble sugars, which confer different kinds of stress tolerance. Alternatively, the development of transgenic plants with genes for Tre biosynthesis leads to appreciable tolerance against different stresses. However, some transgenic plants over-expressing Tre biosynthesis genes are adversely affected. This work aims to systematically review Tre's role as stress tolerance molecule and its crosstalk with other osmolytes under stress conditions, explaining mechanism of stress tolerance and pointing out areas for future research. It is evidenced that this compound owns a promising future as osmo-protectant in the coming years. The present review is intended as means to enrich the awareness on Tre potential benefits, in order to help the scientists as well as the practitioners to improve crop behavior and ultimate production under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adopted from Wingler, 2002)

Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbic peroxidase

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

GA:

Gibberellic acid

GB:

Glycine betaine

GHS:

Glutathione

GPX:

Glutathione peroxidase

HS:

Heat stress

H2O2 :

Hydrogen peroxide

IAA:

Indole-3-acetic acid

LOX:

Lipoxygenase enzyme

MDA:

Malondialdehyde

MDHAR:

Monodehydroascorbate reductase

NO:

Nitric oxide

POD:

Peroxidase

ROS:

Reactive oxygen species

RWC:

Relative water contents

PS:

Photo-system

SOD:

Superoxide dismutase

T6P:

Trehalose-6-phosphate phosphatase synthase

TPP:

Trehalose-6-phosphate phosphatase

Tre:

Trehalose

UV:

Ultraviolet

WUE:

Water use efficiency

References

  • Aamer M, Muhammad UH, Li Z, Abid A, Su Q, Liu Y, Adnan R, Muhammad AUK, Tahir AK, Huang G (2018) Foliar application of glycinebetaine (GB) alleviates the cadmium (Cd) toxicity in spinach through reducing Cd uptake and improving the activity of anti-oxidant system. Appl Ecol Environ Res 16(6):7575–7583

    Google Scholar 

  • Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot 103:275–282

    CAS  Google Scholar 

  • Abdallah MMS, El-Sebai TN, Ramadan AAEM, El-Bassiouny HMS (2020) Physiological and biochemical role of proline, trehalose, and compost on enhancing salinity tolerance of quinoa plant. Bull Natl Res Cent 44:1–13

    Google Scholar 

  • Acosta-Pérez P, Camacho-Zamora BD, Espinoza-Sánchez EA, Gutiérrez-Soto G, Zavala-García F, Abraham-Juárez MJ, Sinagawa-García SR (2020) Characterization of Trehalose-6-phosphate Synthase and Trehalose-6-phosphate Phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress. Plants 9:315

    PubMed  PubMed Central  Google Scholar 

  • Ahmad A, Aslam Z, Javed T, Hussain S, Raza A, Shabbir R, Tauseef M (2022) Screening of wheat (Triticum aestivum L.) genotypes for drought tolerance through agronomic and physiological response. Agron 12(2):287

    CAS  Google Scholar 

  • Aldesuquy H, Ghanem H (2015) Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. J Hortic 2:1–10

    Google Scholar 

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defence mechanism. J Agron Crop Sci 197:258–271

    CAS  Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485–1493

    CAS  Google Scholar 

  • Almeida AM, Silva AB, Aráujo SS, Cardoso LA, Santos DM (2007) Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. Euphytica 154:113–126

    CAS  Google Scholar 

  • Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, Zohaib A, Abbas F, Saleem MF, Ali I (2017) Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front Plant Sci 8:69

    PubMed  PubMed Central  Google Scholar 

  • Aslam MM, Zeeshan M, Irum A, Hassan MU, Ali S, Hussain R, Ramzani PMA, Rashid MF (2015) Influence of seedling age and nitrogen rates on productivity of rice (Oryza sativa L.): a review. Am J Plant Sci 6:1361

    Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van-Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136:3649–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao TS, Chi Z, Liu GL, Chi ZM (2014) Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production. Mol Biotechnol 56:72–78

    CAS  PubMed  Google Scholar 

  • Cesaro A, De-Giacomo O, Sussich F (2008) Water interplay in trehalose polymorphism. Food Chem 106:1318–1328

    CAS  Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    CAS  PubMed  Google Scholar 

  • Chattha MU, Hassan MU, Khan I, Chattha MB, Mahmood A, Nawaz M, Subhani MN, Kharal M, Khan S (2017) Biofortification of wheat cultivars to combat zinc deficiency. Front Plant Sci 8:281

    PubMed  PubMed Central  Google Scholar 

  • Chattha MU, Arif W, Khan I, Soufan W, Bilal CM, Hassan MU, Ullah N, Sabagh AE, Qari SH (2021) Mitigation of cadmium induced oxidative stress by using organic amendments to improve the growth and yield of mash beans [Vigna mungo (L.)]. Agron 11:2152

    Google Scholar 

  • Choudhary V, Chander S, Chethan C, Kumar B, Hasanuzzaman M, Fujita M (2019) Effect of seed priming on abiotic stress tolerance in plants. In: Hasanuzzaman M, Fujita M, Oku H, Tofazzal Islam M (eds) Plant Tolerance to Environment Stress. CRC Press, Boca Raton, pp 29–46

    Google Scholar 

  • Ciereszko I (2018) Regulatory roles of sugars in plant growth and development. Acta Soc Bot Pol 87:1–271

    Google Scholar 

  • Cortina C, Culianez MFA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    CAS  Google Scholar 

  • Dawood MG (2017) Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agric Eng Int: CIGR J 2:245–254

    Google Scholar 

  • Delorge I, Janiak M, Carpentier S, Van-Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5:1–9

    Google Scholar 

  • Dey S, Biswas A, Huang S, Li D, Liu L, Deng Y, Xiao A, Birhanie ZM, Zhang J, Li J, Gong Y (2021) Low temperature effect on different varieties of Corchorus capsularis and Corchorus olitorius at seedling stage. Agron 11:2547

    CAS  Google Scholar 

  • Ding F, Wang R (2018) Amelioration of postharvest chilling stress by trehalose in pepper. Sci Hortic 232:52–56

    CAS  Google Scholar 

  • Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222:1690–1704

    PubMed  Google Scholar 

  • Dolatabadian A, Jouneghani RS (2009) Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Bot Hort Agrobot Cluj 37:165–172

    CAS  Google Scholar 

  • Duman F (2011) Effects of exogenous glycinebetaine and trehalose on lead accumulation in an aquatic plant (Lemna gibba L.). Int J Phytoremediation 13:492–497

    CAS  PubMed  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    CAS  Google Scholar 

  • Dustgeer Z, Seleiman MF, Khan I, Chattha MU, Alhammad BA, Jalal RS, Refay Y, Hassan MU (2021) Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Not Bot Horti Agrobot Cluj 49:12248–12248

    CAS  Google Scholar 

  • Einfalt T, Planinšek O, Hrovat K (2013) Methods of amorphization and investigation of the amorphous state. Acta Pharm 63:305–334

    CAS  Google Scholar 

  • Eisa GSA, Ibrahim SA (2016) Mitigation the harmful effects of diluted sea water salinity on physiological and anatomical traits by foliar spray with trehalose and sodium nitroprusside of cowpea plants. Middle East J 5:672–686

    Google Scholar 

  • Farías-Rodriguez R, Mellor RB, Arias C, Peña-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Google Scholar 

  • Fatemeh K, Nasrin M, Khosro P (2012) Increment of abiotic stress tolerance by metabolic engineering of compatible solutes. Int J Agric Crop Sci 4:1856–1866

    Google Scholar 

  • Feng Y, Chen X, He Y, Kou X, Xue Z (2019) Effects of exogenous trehalose on the metabolism of sugar and abscisic acid in tomato seedlings under salt stress. Trans Tianjin Univ 25:451–471

    CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417

    CAS  PubMed  Google Scholar 

  • Figueroa CM, Lunn JEA (2016) Tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol 172:7–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa CM, Feil R, Ishihara H, Watanabe M, Kölling K, Krause U, Höhne M, Encke B, Plaxton WC, Zeeman SC, Li Z, Schulze WX, Hoefgen R, Stitt M, Lunn JE (2016) Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability. Plant J 85:410–423

    CAS  PubMed  Google Scholar 

  • Francini A, Sebastiani L (2019) Abiotic stress effects on performance of horticultural crops. Hort 5:67

    Google Scholar 

  • Fu Y, Zhang Z, Liu J, Chen M, Pan R, Hu W, Guan Y, Hu J (2020) Seed priming with spermidine and trehalose enhances chilling tolerance of rice via different mechanisms. J Plant Growth Regul 39:669–679

    CAS  Google Scholar 

  • Garcia AB, Engler J, Iyer S, Gerats T, Van-Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Appl Biol Sci 99:15898–15903

    CAS  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    CAS  PubMed  Google Scholar 

  • Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Mueller-Roeber B (2014) Natural products from resurrection plants: potential for medical applications. Biotechnol Adv 32:1091–1101

    CAS  PubMed  Google Scholar 

  • Ghosh UK, Islam MN, Siddiqui MN, Khan MAR (2021) Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. Plant Sig Behav 16:1913306

    Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, de Graaf PT, van Dun K, Poels J, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190. https://doi.org/10.1104/pp.113.1.181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths CA, Sagar R, Geng Y, Primavesi LF, Patel MK, Passarelli MK, Gilmore IS, Steven RT, Bunch J, Paul MJ, Davis BG (2016) Chemical intervention in plant sugar signalling increases yield and resilience. Nature 540:574–578

    CAS  PubMed  Google Scholar 

  • Hafeez MB, Raza A, Zahra N, Shaukat K, Akram MZ, Iqbal S, Basra SMA (2021) Gene regulation in halophytes in conferring salt tolerance. Handbook of bioremediation. Academic Press, Cambridge, pp 341–370

    Google Scholar 

  • Haider S, Raza A, Iqbal J, Shaukat M, Mahmood T (2022) Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Mol Biol Rep 49(6):1–15

    Google Scholar 

  • Han SE, Park SR, Kwon HB, Yi BY, Lee GB, Byun MO (2005) Genetic engineering of drought-resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotussajor-caju. Plant Cell Tissue Organ Cult 82:151–158

    CAS  Google Scholar 

  • Han B, Fu L, Zhang D, He X, Chen Q, Peng M, Zhang J (2016) Interspecies and intraspecies analysis of trehalose contents and the biosynthesis pathway gene family reveals crucial roles of trehalose in osmotic-stress tolerance in cassava. Intern J Mol Sci 17:1077

    Google Scholar 

  • Hassan MU, Aamer M, Chattha MU, Ullah MA, Sulaman S, Nawaz M, Zhiqiang W, Yanqin M, Guoqin H (2017) The role of potassium in plants under drought stress: mini review. J Basic Appl Sci 13:268–271

    CAS  Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Aamer M, Nawaz M, Ali A, Khan MAU, Khan TA (2019a) Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ Sci Pollut Res 26:12673–12688

    CAS  Google Scholar 

  • Hassan MU, Chattha MU, Ullah A, Khan I, Qadeer A, Aamer M, Khan AU, Nadeem F, Khan TA (2019b) Agronomic biofortification to improve productivity and grain Zn concentration of bread wheat. Int J Agric Biol 21:615–620

    CAS  Google Scholar 

  • Hassan MU, Aamer M, Chattha MU, Haiying T, Shahzad B, Barbanti L, Nawaz M, Rasheed A, Afzal A, Liu Y, Guoqin H (2020) The critical role of zinc in plants facing the drought stress. Agric 10:396

    CAS  Google Scholar 

  • Hassan MU, Chattha MU, Khan I, Chattha MB, Barbanti L, Aamer M, Iqbal MM, Nawaz M, Mahmood A, Ali A, Aslam MT (2021a) Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies—a review. Plant Biosys 155:211–234

    Google Scholar 

  • Hassan MU, Aamer M, Nawaz M, Rehman A, Aslam T, Afzal U, Shahzad BA, Ayub MA, Ahmed F, Qiaoying M, Qitao S (2021) Agronomic bio-fortification of wheat to combat zinc deficiency in developing countries. Pak J Agric Res 34(1):201

    Google Scholar 

  • Hu X, Wu ZD, Luo ZY, Burner DM, Pan YB, Wu CW (2020) Genome-wide analysis of the trehalose-6-phosphate synthase (TPS) gene family and expression profiling of ScTPS genes in sugarcane. Agron 10:969

    CAS  Google Scholar 

  • Hui-fang HU (2008) The effect of exogenous trehalose on cold resistance of cucumber seedlings. J nor Hort 2:12–25

    Google Scholar 

  • Ibrahim HA, Abdellatif YM (2016) Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann Agric Sci 61:267–274

    Google Scholar 

  • Imran K, Seleiman MF, Chattha MU, Jalal RS, Mahmood F, Hassan FA, Izzet W, Alhammad BA, Rana R, Hassan MU (2021) Enhancing antioxidant defense system of mung bean with a salicylic acid exogenous application to mitigate cadmium toxicity. Not Bot Hortic Agrobot Cluj 49:12303–12303

    Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    CAS  PubMed  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Liu GL, Chi Z, Hu Z, Chi ZM (2018) Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments. Curr Genet 64:479–491

    CAS  PubMed  Google Scholar 

  • Jiang D, Chen W, Gao J, Yang F, Zhuang C (2019) Overexpression of the trehalose-6-phosphate phosphatase OsTPP3 increases drought tolerance in rice. Plant Biotechnol Rep 13:285–292

    Google Scholar 

  • John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, Yaqoob U, Kaul T (2017) Trehalose: metabolism and role in stress signaling in plants. Stress Signaling Plants Genom Proteom Perspect 2:261–275

    Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mäntylä E, Palva ET, Van-Dijck P, Holmström KO (2007a) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    CAS  PubMed  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva T, Dijck PV, Holmström KO (2007b) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    CAS  PubMed  Google Scholar 

  • Kaur A, Thind SK (2018) Effect of exogenous trehalose in protection of cells and their membranes in wheat (Triticum aestivum L.) genotypes under heat stress. Curr J Appl Sci Technol 30:1–13

    Google Scholar 

  • Kaya C, Tuna AL, Ashraf M, Altunlu H (2007) Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environ Exper Bot 60:397–403

    CAS  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van DEW, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    CAS  PubMed  Google Scholar 

  • Khan MT, Ahmed S, Shah AA, Noor-Shah A, Tanveer M, El-Sheikh MA, Siddiqui MH (2021) Influence of zinc oxide nanoparticles to regulate the antioxidants enzymes, some osmolytes and agronomic attributes in Coriandrum sativum L. grown under water stress. Agron 11:2004

    CAS  Google Scholar 

  • Khater MA, Dawood MG, Sadak MS, Shalaby MA, El-Awadi ME, El-Din KG (2018) Enhancement the performance of cowpea plants grown under drought conditions via trehalose application. Middle East J Agric Res 7:782–800

    Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Reg 38:606–618

    CAS  Google Scholar 

  • Kosar F, Akram NA, Ashraf M, Ahmad A, Alyemeni MN, Ahmad P (2021) Impact of exogenously applied trehalose on leaf biochemistry, achene yield and oil composition of sunflower under drought stress. Physiol Plant 172:317–333

    CAS  PubMed  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of droughtrelated trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    CAS  PubMed  Google Scholar 

  • Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Mendioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AA, Mackill DJ, Septiningsih EM (2015) A trehalose 6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:1–5

    Google Scholar 

  • Lei M, Wu X, Huang C, Qiu Z, Wang L, Zhang R, Zhang J (2019) Trehalose induced by reactive oxygen species relieved the radial growth defects of Pleurotus ostreatus under heat stress. Appl Microbiol Biotech 103:5379–5390

    CAS  Google Scholar 

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    CAS  PubMed  Google Scholar 

  • Li ZG, Luo LJ, Zhu LP (2014) Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot Stud 55:1–9

    CAS  Google Scholar 

  • Li F, Zhou Q, Qi X, Song Z (2019) Effects of trehalose on the growth of rice seedlings under cadmium stress. J Agro Environ Sci 38:1827–1834

    Google Scholar 

  • Liang Z, Luo J, Wei B, Liao Y, Liu Y (2021) Trehalose can alleviate decreases in grain number per spike caused by low-temperature stress at the booting stage by promoting floret fertility in wheat. J Agron Crop Sci 207:717–732

    CAS  Google Scholar 

  • Lin Y, Zhang J, Gao W, Chen Y, Li H, Lawlor DW, Paul MJ, Pan W (2017) Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biol 17:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Yang J, Wang Q, Zhu H, Chen Z, Dao Y, Wang K (2019) Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol 19:1–15

    Google Scholar 

  • Lin Q, Wang S, Dao Y, Wang J, Wang K (2020) Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. J Exper Bot 71:4285–4297

    CAS  Google Scholar 

  • Liu Q, Ni F, Wang Z (2009) Effects of exogenous trehalose on antioxidant system of Iris dichotoma P. under NaHCO3 stress. J Yangz Uni Agr Life Sci Edi 30(2):81–85

    Google Scholar 

  • Liu Z, Ma L, He X, Tian C (2014) Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl Soil Ecol 84:185–191

    Google Scholar 

  • Liu T, Zhu L, Zhang Z, Huang H, Zhang Z, Jiang L (2017) Protective role of trehalose during radiation and heavy metal stress in Aureobasidium subglaciale F134. Sci Rep 7:1–9

    Google Scholar 

  • Liu XM, Wu XL, Wei GAO, Qu JB, Qiang C, Huang CY, Zhang JX (2019a) Protective roles of trehalose in Pleurotus pulmonarius during heat stress response. J Integr Agric 18:428–437

    CAS  Google Scholar 

  • Liu X, Fu L, Qin P, Sun Y, Liu J, Wang X (2019b) Overexpression of the wheat trehalose 6-phosphate synthase 11 gene enhances cold tolerance in Arabidopsis thaliana. Gene 710:210–217

    CAS  PubMed  Google Scholar 

  • Liu T, Ye X, Li M, Li J, Qi H, Hu X (2020) H2O2 and NO are involved in trehalose-regulated oxidative stress tolerance in cold-stressed tomato plants. Environ Exp Bot 171:103961

    CAS  Google Scholar 

  • Liu T, Shi J, Li M, Ye X, Qi H (2021) Trehalose triggers hydrogen peroxide and nitric oxide to participate in melon seedlings oxidative stress tolerance under cold stress. Environ Exp Bot 184:104379

    CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134:575–582

    PubMed  Google Scholar 

  • López-Gómez M, Lluch C (2012) Trehalose and abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 253–265

    Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384

    CAS  Google Scholar 

  • Luo Y, Li F, Wang GP, Yang XH, Wang W (2010) Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54:495–501

    CAS  Google Scholar 

  • Luo Y, Wang W, Fan YZ, Gao YM, Wang D (2018) Exogenously-supplied trehalose provides better protection for D1 protein in winter wheat under heat stress. Russ J Plant Physiol. 65(1):115–112

    CAS  Google Scholar 

  • Luo Y, Liu HY, Fan YZ, Wang W, Zhao YY (2018b) Comparative chloroplast proteome analysis of exogenously supplied trehalose to wheat seedlings under heat stress. Photosynthetica 56:1123–1133

    CAS  Google Scholar 

  • Luo Y, He D, Wang W, Yuan S (2020) Exogenously-supplied trehalose protects photosystem II by promoting cyclic electron flow in winter wheat under heat and drought stress. Authorea Preprints. https://doi.org/10.22541/au.158084394.44870606

    Article  Google Scholar 

  • Luo Y, Xie Y, Li W, Wei M, Dai T, Li Z, Wang B (2021) Physiological and transcriptomic analyses reveal exogenous trehalose is involved in the responses of wheat roots to high temperature stress. Plants 10:2644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma C, Wang Z, Kong B, Lin T (2013) Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul 70:275–285

    CAS  Google Scholar 

  • Mahmud SA, Hirasawa T, Shimizu H (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109:262–266

    CAS  PubMed  Google Scholar 

  • Marriboina S, Attipalli RR (2020) Hydrophobic cell-wall barriers and vacuolar sequestration of Na+ ions are among the key mechanisms conferring high salinity tolerance in a biofuel tree species, Pongamia pinnata L. pierre. Environ Exp Bot 171:103949

    CAS  Google Scholar 

  • Martins LL, Mourato MP, Baptista S, Reis R, Carvalheiro F, Almeida AM, Fevereiro P, Cuypers A (2014) Response to oxidative stress induced by cadmium and copper in tobacco plants (Nicotiana tabacum) engineered with the trehalose-6-phosphate synthase gene (AtTPS1). Acta Physiol Plant 36:755–765

    CAS  Google Scholar 

  • McIntyre HJ, Davies H, Hore TA, Miller SH, Dufour JP, Ronson CW (2007) Trehalose biosynthesis in Rhizobium leguminosarum by Trifolii and its role in desiccation tolerance. Appl Environ Microbiol 73:3984–3992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM (2022) Multidimensional role of Silicon to activate resilient plant growth and to mitigate abiotic stress. Front Plant Sci 13:819658

    PubMed  PubMed Central  Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Van-Dijck P, Iturriaga GA (2007) Bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    CAS  PubMed  Google Scholar 

  • Mohamed HI, Akladious SA, El-Beltagi HS (2018) Mitigation the harmful effect of salt stress on physiological, biochemical and anatomical traits by foliar spray with trehalose on wheat cultivars. Fersenius Environ Bull 27:7054–7065

    CAS  Google Scholar 

  • Mostofa MG, Fujita HMA, M, Tran LSP, (2015a) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:11433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Fujita HMA, M, (2015b) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252:461–475

    CAS  PubMed  Google Scholar 

  • Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Arif MS (2021) A manipulative interplay between positive and negative regulators of phytohormones: a way forward for improving drought tolerance in plants. Physiol Plan 172(2):1269–1290

    CAS  Google Scholar 

  • Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Intern J Mol Sci 21:5208

    CAS  Google Scholar 

  • Nagy-Réder D, Birinyi Z, Rakszegi M, Békés F, Gell G (2022) The effect of abiotic stresses on the protein composition of four hungarian wheat varieties. Plants 11:1

    Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    CAS  PubMed  Google Scholar 

  • Nuccio ML, Wu J, Mowers R, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    CAS  PubMed  Google Scholar 

  • Olsson C, Swenson J (2020) Structural comparison between sucrose and trehalose in aqueous solution. J Phys Chem 124:3074–3082

    CAS  Google Scholar 

  • Onwe RO, Onwosi CO, Ezugworie FN, Ekwealor CC, Okonkwo CC (2022) Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. Sci Total Environ 806:150432

    CAS  PubMed  Google Scholar 

  • Parida AK, Dagaonkar VS, Phalak MS, Aurangabadkar LP (2008) Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiol Plant 30:619–627

    CAS  Google Scholar 

  • Paul S, Paul S (2014) Trehalose induced modifications in the solvation pattern of N-methylacetamide. J Phys Chem B 118:1052–1063

    CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    CAS  PubMed  Google Scholar 

  • Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with, E. coli genes for trehalose synthesis. Plant Biotechnol J 2:71–82

    CAS  PubMed  Google Scholar 

  • Pilon SEA, Terry N, Sears T, Kim H, Zayed A, Hwang S, Van-Dun K, Voogd E, Verwoerd TC, Krutwagen RW, Goddijn OJ (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    Google Scholar 

  • Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qaid EA (2020) Effect of exogenous trehalose on physiological responses of wheat plants under drought stress. J Stress Physiol Biochem 16:35–48

    CAS  Google Scholar 

  • Rajput VD, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S (2021) Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biol 10:267

    CAS  Google Scholar 

  • Rasheed A, Hassan MU, Aamer M, Batool M, Sheng FANG, Ziming WU, Huijie LI (2020a) A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.). Not Bot Horti Agrobot Cluj 48:1756–1788

    CAS  Google Scholar 

  • Rasheed A, Fahad S, Hassan MU, Tahir MM, Aamer M, Wu Z (2020b) A review on aluminum toxicity and quantitative trait loci maping in rice (Oryza sativa L). Appl Eco Environ Res 18:3951–3964

    Google Scholar 

  • Rasheed A, Fahad S, Aamer M, Hassan MU, Tahir MM, Wu ZM (2020c) Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. Appl Ecol Environ Res 18:4005–4023

    Google Scholar 

  • Rasheed A, Hassan MU, Aamer M, Bian JM, Xu ZR, He XF, Wu ZM (2020d) Iron toxicity, tolerance and quantitative trait loci mapping in rice; a review. Appl Ecol Environ Res 18:7483–7498

    Google Scholar 

  • Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, Xing H, Li L, Hassan MU, Qari SH, Jie Y (2022) Molecular Tools and Their Applications in Developing Salt-Tolerant Soybean (Glycine max L.) Cultivars. Bioengineering 9(10):495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raza A (2021) Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: consequences and mitigation strategies. J Plant Growth Regul 40:1368–1388

    CAS  Google Scholar 

  • Raza A (2022) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep 41:741–763

    CAS  PubMed  Google Scholar 

  • Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232

    PubMed  Google Scholar 

  • Raza A, Tabassum J, Mubarik MS, Anwar S, Zahra N, Sharif Y, Hafeez MB, Zhang C, Corpas FJ, Chen H (2022a) Hydrogen sulfide: an emerging component against abiotic stress in plants. Plant Biol 24:540–558

    CAS  PubMed  Google Scholar 

  • Raza A, Su W, Jia Z, Luo D, Zhang Y, Gao A, Hussain MA, Mehmood SS, Cheng Y, Lv Y, Zou X (2022b) Mechanistic insights Into trehalose-mediated cold stress tolerance in rapeseed (Brassica napus L.) seedlings. Front Plant Sci 13:857980

    PubMed  PubMed Central  Google Scholar 

  • Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F Jr, Zhang C, Chen H, Zhuang W, Varshney RK (2022c) Advances in “Omics” Approaches for improving toxic metals/metalloids tolerance in plants. Front Plant Sci 12:794373

    PubMed  PubMed Central  Google Scholar 

  • Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM and Zhuang W (2022d) Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci 13:961872

  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KH, Singh RK, Zhuang W, Varshney RK (2022e) Smart reprograming of plants against salinity stress using modern biotechnological tools. Critic Rev Biotechnol 15:1–28. https://doi.org/10.1080/07388551.2022.2093695

  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Google Scholar 

  • Rezvani S, Shariati S (2009) Analysis of trehalose in Arabidopsis thaliana L. in addition, helpful at all stages of HD. Rasayan J Chem 2:267–270

    CAS  Google Scholar 

  • Rohman M, Islam M, Monsur MB, Amiruzzaman M, Fujita M, Hasanuzzaman M (2019) Trehalose protects maize plants from salt stress and phosphorus deficiency. Plants 8:568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M (2021) Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxid 10:277

    CAS  Google Scholar 

  • Sadak MS (2016) Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Int J Chem Technol Res 9:147–155

    CAS  Google Scholar 

  • Sadak MS (2019) Physiological role of trehalose on enhancing salinity tolerance of wheat plant. Bull Natl Res Cent 43:1–10

    Google Scholar 

  • Sadak MS, El-Bassiouny HMS, Dawood MG (2019) Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Natl Res Cent 43:5

    Google Scholar 

  • Sah SK, Kaur G, Wani SH (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 83–96

    Google Scholar 

  • Samadi S, Habibi G, Vaziri A (2019) Exogenous trehalose alleviates the inhibitory effects of salt stress in strawberry plants. Acta Physiol Plant 41:1–11

    CAS  Google Scholar 

  • Schluepmann H, Paul M (2009) Trehalose metabolites in Arabidopsis: elusive, active and central. Arabidopsis Book 7:e0122

    PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Van-Dijck P (2017) Trehalose metabolism: a sweet spot for Burkholderia pseudomallei virulence. Virulence 8:5–7

    PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hort 185:68–75

    CAS  Google Scholar 

  • Shahbaz M, Abid A, Masood A, Waraich EA (2017) Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. J Plant Nutr 40:584–599

    CAS  Google Scholar 

  • Shahzad AN, Qureshi MK, Ullah S, Latif M, Ahmad S, Bukhari SAH (2020) Exogenous trehalose improves cotton growth by modulating antioxidant defense under salinity-induced osmotic stress. Pak J Agric Res 33:270–279

    Google Scholar 

  • Sharma A, Yuan H, Kumar V, Ramakrishnan M, Kohli SK, Kaur R, Thukral AK, Bhardwaj R, Zheng B (2019) Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol Environ Saf 179:50–61

    CAS  PubMed  Google Scholar 

  • Sharma MP, Grover M, Chourasiya D, Bharti A, Agnihotri R, Maheshwari HS, Pareek A, Buyer JS, Sharma SK, Schütz L, Mathimaran N (2020) Deciphering the role of trehalose in tripartite symbiosis among rhizobia, arbuscular mycorrhizal fungi, and legumes for enhancing abiotic stress tolerance in crop plants. Front Microbiol 11:509919

    PubMed  PubMed Central  Google Scholar 

  • Shim JS, Seo JS, Seo JS, Kim Y, Koo Y, Do-Choi Y, Jung C (2019) Heterologous expression of bacterial trehalose biosynthetic genes enhances trehalose accumulation in potato plants without adverse growth effects. Plant Biotechnol Rep 13:409–418

    Google Scholar 

  • Sols A, Gancedo C, Delafuente G (1971) Energy yielding metabolism in yeasts. In: Rose C, Harrison JSL (eds) The yeasts. Academic, London, pp 271–307

    Google Scholar 

  • Stiller I, Dulai S, Kondrák M, Tarnai R, Szabó L, Toldi O, Bánfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta 227:299–308

    CAS  PubMed  Google Scholar 

  • Sugawara M, Cytryn EJ, Sadowsky MJ (2010) Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol 76:1071–1081

    CAS  PubMed  Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermo tolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    CAS  PubMed  Google Scholar 

  • Tang S, Wei L, Zhao X, Yang L, Zhou Y (2011) Effect of DMSO and trehalose on physiological characteristics of wheat seedlings under low temperature stress. In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering 5900–5903.

  • Tanveer M, Shahzad B, Sharma A, Khan EA (2019) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303

    CAS  PubMed  Google Scholar 

  • Tarek AE, Sadak MS, Dawood MG (2017) Improving drought tolerance of quinoa plant by foliar treatment of trehalose. Agricultural Engineering International: CIGR Journal Special issue 245–254. https://cigrjournal.org/index.php/Ejounral/article/view/4539

  • Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci 4:165–170

    Google Scholar 

  • Tian LX, Li LJ, Liu X, Bi WS, Tong HY, Wei S, Gu WR, Li J (2017) Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose. Jiangsu J Agric Sci 33:754–759

    Google Scholar 

  • Vanhaelewyn L, Prinsen E, Van-Der-Straeten D, Vandenbussche F (2016) Hormone controlled UV-B responses in plants. J Exp Bot 67:4469–4482

    CAS  PubMed  Google Scholar 

  • Wang K, Li F, Gao M, Huang Y, Song Z (2020) Mechanisms of trehalose-mediated mitigation of Cd toxicity in rice seedlings. J Clean Prod 267:121982

    CAS  Google Scholar 

  • Wiggers HAL (1832) Untersuchungüber das mutterkorn, Secalecornutum. Ann Pharm 1:129–182

    Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochem 60:437–440

    CAS  Google Scholar 

  • Wingler A, Paul M (2013) The role of trehalose metabolism in chloroplast development and leaf senescence. In: Biswal B, Krupinska K, Biswal UC (eds) plastid development in leaves during growth and senescence. Springer, Dordrecht, pp 551–565

    Google Scholar 

  • Yan ZY, Zhao MR, Huang CY, Zhang LJ, Zhang JX (2021) Trehalose alleviates high-temperature stress in Pleurotus ostreatus by affecting central carbon metabolism. Microb Cell Fact 20:1–11

    Google Scholar 

  • Yang L, Zhao X, Zhu H, Paul M, Zu Y, Tang Z (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedling. Front Plant Sci 5:570

    PubMed  PubMed Central  Google Scholar 

  • Yogita K, Madan S, Rani B, Reena K, Munjal R (2015) Trehalose mitigates heat stress-induced damages in wheat seedlings. J Cereal Res 7:74–78

    Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RAC, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of Snf1-related protein kinase (SnRK1) activity and regulation of metabolic pathways by trehalose 6-phosphate. Plant Physiol 149:1860–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Raza A, Huang H, Su W, Luo D, Zeng L, Zou X (2022) Analysis of Lhcb gene family in rapeseed (Brassica napus L.) identifies a novel member “BnLhcb3. 4” modulating cold tolerance. Environ Exp Bot 198:104848

    CAS  Google Scholar 

  • Zhao DQ, Li TT, Hao ZJ, Cheng ML, Tao J (2019) Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 24:247–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar F, Akram NA, Ashraf M (2020) Osmoprotection in plants under abiotic stresses: New insights into a classical phenomenon. Planta 251:11–17

    Google Scholar 

  • Zulfiqar F, Chen J, Finnegan PM, Younis A, Nafees M, Zorrig W, Hamed KB (2021a) Application of Trehalose and Salicylic Acid Mitigates Drought Stress in Sweet Basil and Improves Plant Growth. Plants 10:1078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zulfiqar F, Chen J, Finnegan PM, Nafees M, Younis A, Shaukat N, Latif N, Abideen Z, Zaid A, Raza A, Siddiqui ZS (2021b) Foliar application of trehalose or 5-aminolevulinic acid improves photosynthesis and biomass production in drought stressed. Alpinia Zerumbet Agric 11:908

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, King Khalid University for supporting this work through research groups program under grant number R.G.P. 2/17/43.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by MUH, MN, ANS. Writing—original draft was done by MUH, MN, ANS and LB; writing—review and editing was done by MS, MH, MB, SP, SA, YSM, AR, AES and SHQ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Muhammad Umair Hassan or Adnan Noor Shah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.U., Nawaz, M., Shah, A.N. et al. Trehalose: A Key Player in Plant Growth Regulation and Tolerance to Abiotic Stresses. J Plant Growth Regul 42, 4935–4957 (2023). https://doi.org/10.1007/s00344-022-10851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10851-7

Keywords

Navigation