Skip to main content
Log in

Allicin Decreases Phytotxic Effects of Petroleum Hydrocarbons by Regulating Oxidative Defense and Detoxification of Cytotoxic Compounds in Wheat

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hydrocarbon stress is among significant environmental stresses limiting crop growth and production. Allicin is an organosulfur compound with the potential to detoxify radicals, abate oxidative injury, and safeguard mitochondrial function. However, allicin role in mediating plant defense responses under abiotic stresses is not established. Therefore, the impact of varying levels of allicin (0, 50, 100, and 200 mg L−1) on growth, photoysnthesis, osmolyte accumulation, and antioxidant defense system of wheat plants under petroleum hydrocarbon (0, 5 and 10%) was evaluated. Hydrocarbon stress (10%) significantly inhibited growth characteristics, relative water contents, chlorophyll, antioxidant pigments, DPPH radical scavenging potential, reducing sugars, free amino acids, as well as soluble proteins in wheat plants. Hydrocarbon stress (10%) augmented the secondary metabolites accumulation like anthocyanins, phenolics, flavonoids, and ascorbic acid in wheat plants. Plants accumulated more total soluble sugars, non-reducing sugars and proline concentrations after exposure to 10% hydrocarbon stress. Hydrocarbon stress enhanced the activities of antioxidant enzymes (SOD, POD, CAT, and APX). Plants exposed to hydrocarbon stress displayed a significant accretion in oxidative damage, mirrored as enhanced electrolyte leakage, ROS generation (H2O2 and O2.), lipoxygenase activity, and lipid peroxidation estimated as MDA and methylglyoxal levels. Besides, exogenous allicin (100, 200 mg L−1) improved plant growth, chlorophyll contents, and osmolytes accumulation under hydrocarbon stress. Furthermore, allicin (100 mg L−1) effectively increased plants' non-enzymatic antioxidant levels and enzymatic antioxidant activities under hydrocarbon stress. Allicin diminished oxidative stress by lowering electrolyte leakage (39.4%), H2O2 (20.9%), O2.− (37.7%), lipoxygenase activity (23.1%), MDA (25.2%), and MG (32.4%) levels under hydrocarbon stress. This is the first report describing the involvement of allicin, notably higher doses (100 and 200 mg L−1), in alleviating the phytotoxic impacts of hydrocarbon stress by modulating growth, osmolyte accumulation, oxidative defense, and ROS metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achuba F (2006) The effect of sublethal concentrations of crude oil on the growth and metabolism of cowpea (Vigna unguiculata) seedlings. Environmentalist 26(1):17–20

    Google Scholar 

  • Achuba F, Erhijivwo P (2017) The effect of abattoir waste water on the metabolism of cowpea seedlings grown in diesel contaminated soil. Nigerian J Sci Environ 15(1):155–162

    Google Scholar 

  • Achuba F, Iserhienrhien L (2018) Effects of soil treatment with abattoir effluent on morphological and biochemical profiles of cowpea seedlings (V. unguiculata) grown in gasoline polluted soil. Ife J Sci 20(1):51–59

    Google Scholar 

  • Ahmad A, Khan WU, Shah AA et al (2021) Dopamine alleviates hydrocarbon stress in Brassica oleracea through modulation of physio-biochemical attributes and antioxidant defense systems. Chemosphere 270:128633

    CAS  PubMed  Google Scholar 

  • Ahmad B, Qadir SU, Dar TA, Alam P, Yousuf PY, Ahmad P (2022) Karrikins: smoke-derived phytohormones from stress alleviation to signaling. J Plant Growth Regul. https://doi.org/10.1007/s00344-022-10703-4

    Article  Google Scholar 

  • Ahmed F, Fakhruddin A (2018) A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int J Environ Sci Nat Resour 11(3):1–7

    Google Scholar 

  • Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ (2017) 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environ Pollut 229:922–931

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Wang Y, Mao Q, Wu M, Yan Y, Ren J, Wang X, Liu A, Chen S (2020) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut 259:113957

    CAS  PubMed  Google Scholar 

  • Al-Hawas G, Shukry W, Azzoz M, Al-Moaik R (2012) The effect of sublethal concentrations of crude oil on the metabolism of Jojoba (Simmodsia chinensis) seedlings. Int Res J Plant Sci 3(4):54–62

    Google Scholar 

  • Al-Hawash AB, Dragh MA, Li S et al (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Aquat Res 44(2):71–76

    Google Scholar 

  • Ali MH, Khan MI, Bashir S et al (2021) Biochar and Bacillus sp. MN54 assisted phytoremediation of diesel and plant growth promotion of maize in hydrocarbons contaminated soil. Agronomy 11(9):1795

    CAS  Google Scholar 

  • Ali MH, Sattar MT, Khan MI et al (2020) Enhanced growth of mungbean and remediation of petroleum hydrocarbons by Enterobacter sp. MN17 and biochar addition in diesel contaminated soil. Appl Sci 10(23):8548

    CAS  Google Scholar 

  • Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P (2022) Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem 185:188–197

    CAS  PubMed  Google Scholar 

  • Bano K, Kumar B, Alyemeni MN, Ahmad P (2022) Protective mechanisms of sulfur against arsenic phytotoxicity in Brassica napus by regulating thiol biosynthesis, sulfur-assimilation, photosynthesis, and antioxidant response. Plant Physiol Biochem 185:188–197

    Google Scholar 

  • Bashandy SR, Abd-Alla MH, Dawood MF (2020) Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Appl Soil Ecol 154:103654

    Google Scholar 

  • Basit F, Bhat JA, Guan Y, Jan BL, Tyagi A, Ahmad P (2022) Nitric oxide and spermine revealed positive defense interplay for the regulation of the chromium toxicity in soybean (Glycine max L.). Environ Pollut 308:119602

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Begum N, Akhtar K, Ahanger MA et al (2021) Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ Sci Pollut Res 28(33):45276–45295

    Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transducation in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Bhuyan B, Pandey P (2022) Remediation of petroleum hydrocarbon contaminated soil using hydrocarbonoclastic rhizobacteria, applied through Azadirachta indica rhizosphere. Int J Phytoremediat. https://doi.org/10.1080/15226514.2022.2033689

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Cevher-Keskin B, Selçukcan-Erol Ç, Yüksel B et al (2018) Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress. Environ Sci Pollut Res 25(32):32660–32674

    CAS  Google Scholar 

  • Chakravarty P, Deka H (2021) Enzymatic defense of Cyperus brevifolius in hydrocarbons stress environment and changes in soil properties. Sci Rep 11(1):1–12

    Google Scholar 

  • Chance B, Maehly A (1955) Assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Google Scholar 

  • Chaurasia S, Singh AK, Kumar A et al (2021) Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 113(5):3198–3215

    CAS  PubMed  Google Scholar 

  • Correa-García S, Pande P, Séguin A, St-Arnaud M, Yergeau E (2018) Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol 11(5):819–832

    PubMed  PubMed Central  Google Scholar 

  • Desoky E-SM, Elrys AS, Mansour E et al (2021) Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci Hortic 288:110340

    CAS  Google Scholar 

  • Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram A, Douma AC (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochimica Et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1120(1):97–104

    CAS  PubMed  Google Scholar 

  • Gardner FP, Pearce RB, Mitchell RL (1985) Physiology of crop plants. The Iowa State University Press, Ames, Iowa 50010.

  • González L, González-Vilar M (2001) Determination of relative water content Handbook of plant ecophysiology techniques. Springer, Cham p 207–212

  • Gul N, Ahmad P, Wani TA, Tyagi A, Aslam S (2022) Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum. Sci Rep 12(1):1–3

    Google Scholar 

  • Haider FU, Ejaz M, Cheema SA et al (2021) Phytotoxicity of petroleum hydrocarbons: sources, impacts and remediation strategies. Environ Res 197:111031

    CAS  PubMed  Google Scholar 

  • Hamilton PB, Van Slyke DD (1943) The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. J Biol Chem 150(1):231–250

    CAS  Google Scholar 

  • Hayat S, Ahmad H, Ali M, Ren K, Cheng Z (2018) Aqueous garlic extract stimulates growth and antioxidant enzymes activity of tomato (Solanum lycopersicum). Sci Hortic 240:139–146

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Google Scholar 

  • Hoang SA, Lamb D, Sarkar B et al (2022) Phosphorus application enhances alkane hydroxylase gene abundance in the rhizosphere of wild plants grown in petroleum-hydrocarbon-contaminated soil. Environ Res 204:111924

    CAS  PubMed  Google Scholar 

  • Hoang SA, Sarkar B, Seshadri B et al (2021) Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J Hazard Mater 416:125702

    CAS  PubMed  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Sani SGAS, Reichenauer TG (2019) Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environ Sci Pollut Res 26(18):18451–18464

    CAS  Google Scholar 

  • Iqbal A, Mukherjee M, Rashid J, Khan SA, Ali MA, Arshad M (2019) Development of plant–microbe phytoremediation system for petroleum hydrocarbon degradation: an insight from alkb gene expression and phytotoxicity analysis. Sci Total Environ 671:696–704

    CAS  PubMed  Google Scholar 

  • Ite AE, Harry TA, Obadimu CO, Asuaiko ER, Inim IJ (2018) Petroleum hydrocarbons contamination of surface water and groundwater in the Niger Delta region of Nigeria. J Environ Pollut Hum Health 6(2):51–61

    CAS  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. Handbook of phycological methods, physiological and biochemical methods. Cambridge University Press, Cambridge, pp 59–70

    Google Scholar 

  • Ji X, Li J, Meng Z, Dong S, Zhang S, Qiao K (2019) Inhibitory effect of allicin against Meloidogyne incognita and Botrytis cinerea in tomato. Sci Hortic 253:203–208

    CAS  Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33(2):213–217

    CAS  Google Scholar 

  • Kiamarsi Z, Kafi M, Soleimani M, Nezami A, Lutts S (2020) Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils. J Clean Prod 253:119719

    CAS  Google Scholar 

  • Li M, Sun K, Fang Y et al (2021a) Toxic effects of acetone, 2-pentanone, and 2-hexanone on physiological indices of wheat (Triticum aestivum L.) germination and seedlings. Environ Sci Pollut Res 28(45):64552–64560

    CAS  Google Scholar 

  • Li X, Ahammed GJ, Zhang X-N et al (2021b) Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 403:123922

    CAS  PubMed  Google Scholar 

  • Liao C, Xu W, Lu G et al (2015) Accumulation of hydrocarbons by maize (Zea mays L.) in remediation of soils contaminated with crude oil. Int J Phytoremediat 17(7):693–700

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in enzymology. Elsevier, Amsterdam, pp 350–382

    Google Scholar 

  • Liu F, Tu T, Li S, Cai M, Huang X, Zheng F (2019) Relationship between plankton-based β-carotene and biodegradable adaptablity to petroleum-derived hydrocarbon. Chemosphere 237:124430

    CAS  PubMed  Google Scholar 

  • Loomis WE, Shull CA (1937) Methods in plant physiology. Methods in plant physiology. McGraw-Hill, New York

    Google Scholar 

  • Ma H, Wang A, Zhang M et al (2018) Compared the physiological response of two petroleum-tolerant contrasting plants to petroleum stress. Int J Phytorem 20(10):1043–1048

    CAS  Google Scholar 

  • Marinova G, Batchvarov V (2011) Evaluation of the methods for determination of the free radical scavenging activity by DPPH. Bulg J Agric Sci 17(1):11–24.

    Google Scholar 

  • Martí MC, Camejo D, Fernández-García N et al (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171(1–3):879–885

    PubMed  Google Scholar 

  • Mendarte-Alquisira C, Gutiérrez-Rojas M, González-Márquez H, Volke-Sepúlveda T (2017) Improved growth and control of oxidative stress in plants of Festuca arundinacea exposed to hydrocarbons by the endophytic fungus Lewia sp. Plant Soil 411(1):347–358

    CAS  Google Scholar 

  • Mita S, Murano N, Akaike M, Nakamura K (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β-amylase and on the accumulation of anthocyanin that are inducible by sugars. Plant J 11(4):841–851

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255. https://doi.org/10.1016/j.ecoenv.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–380

    CAS  Google Scholar 

  • Noori A, Zare Maivan H, Alaie E, Newman LA (2018) Leucanthemum vulgare Lam. crude oil phytoremediation. Int J Phytoremediat 20(13):1292–1299

    CAS  Google Scholar 

  • Ossai IC, Ahmed A, Hassan A, Hamid FS (2020) Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov 17:100526

    Google Scholar 

  • Qureshi FF, Ashraf MA, Rasheed R et al (2020) Organic chelates decrease phytotoxic effects and enhance chromium uptake by regulating chromium-speciation in castor bean (Ricinus communis L.). Sci Total Environ 716:137061. https://doi.org/10.1016/j.scitotenv.2020.137061

    Article  CAS  PubMed  Google Scholar 

  • Raja P, Karthikeyan P, Marigoudar SR, Sharma KV, Murthy MVR (2022) Spatial distribution of total petroleum hydrocarbons in surface sediments of Palk Bay, Tamil Nadu, India. Environ Chem Ecotoxicol 4:20–28

    CAS  Google Scholar 

  • Sabagh AE, Islam MS, Skalicky M et al (2021) Salinity stress in wheat (Triticum aestivum L.) in the changing climate: adaptation and management strategies. Front Agron 3:661932

    Google Scholar 

  • Saddiq MS, Iqbal S, Hafeez MB et al (2021) Effect of salinity stress on physiological changes in winter and spring wheat. Agronomy 11(6):1193

    CAS  Google Scholar 

  • Saeed M, Ilyas N, Arshad M, Sheeraz M, Ahmed I, Bhattacharya A (2021) Development of a plant microbiome bioremediation system for crude oil contamination. J Environ Chem Eng 9(4):105401

    CAS  Google Scholar 

  • Sarker U, Oba S (2018) Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sci Rep 8(1):1–9

    Google Scholar 

  • Shahzad A, Saddiqui S, Bano A (2016) The response of maize (Zea mays L.) plant assisted with bacterial consortium and fertilizer under oily sludge. Int J Phytoremediat 18(5):521–526

    CAS  Google Scholar 

  • Skrypnik L, Maslennikov P, Novikova A, Kozhikin M (2021) Effect of crude oil on growth, oxidative stress and response of antioxidative system of two rye (Secale cereale L.) varieties. Plants 10(1):157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Wang Y-S, Sun C-C, Wang Y-T, Peng Y-L, Cheng H (2012) Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera Gymnorrhiza. Ecotoxicology 21(6):1625–1632

    CAS  PubMed  Google Scholar 

  • Song X, Li C, Chen W (2022) Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol Environ Saf 234:113389

    CAS  PubMed  Google Scholar 

  • Tang M, Chen H, Huang J, Tian Z (2009) AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol Biochem 41(5):936–940

    CAS  Google Scholar 

  • Tariq M, Shah AA, Yasin NA, Ahmad A, Rizwan M (2021) Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum. Int J Phytorem 23(2):119–129

    CAS  Google Scholar 

  • Ummara U, Noreen S, Afzal M et al (2022) Induced systemic tolerance mediated by plant–microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere 290:133327

    CAS  PubMed  Google Scholar 

  • van Rossum MW, Alberda M, van der Plas LH (1997) Role of oxidative damage in tulip bulb scale micropropagation. Plant Sci 130(2):207–216

    Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    CAS  Google Scholar 

  • Xiang Q, Cheng Z, Wang J et al (2020) Allicin attenuated advanced oxidation protein product-induced oxidative stress and mitochondrial apoptosis in human nucleus pulposus cells. Oxid Med Cell Longev 2020:6685043. https://doi.org/10.1155/2020/6685043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22(1):598–608

    CAS  Google Scholar 

  • Yaghoubian I, Ghassemi S, Nazari M, Raei Y, Smith DL (2021) Response of physiological traits, antioxidant enzymes and nutrient uptake of soybean to Azotobacter chroococcum and zinc sulfate under salinity. S Afr J Bot 143:42–51

    CAS  Google Scholar 

  • Yang G, Rhodes D, Joly RJ (1996) Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Funct Plant Biol 23(4):437–443

    CAS  Google Scholar 

  • Yang W, Sun Y, Chen S et al (2011) The effect of exogenously applied nitric oxide on photosynthesis and antioxidant activity in heat stressed chrysanthemum. Biol Plant 55(4):737–740

    CAS  Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 57(3):508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousaf U, Khan AHA, Farooqi A et al (2022) Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 286:131782

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work has been financially supported by Higher Education Commission of Pakistan.

Funding

Funding was provided by Higher Education Commision, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Arslan Ashraf: Conceptualization, Project administration, Supervision, Writing—original draft. Rizwan Rasheed: Data curation, Formal analysis, Methodology, Writing—original draft. Iqbal Hussain: Conceptualization, Writing—review & editing. Freeha Fatima Qureshi: Supervision, Methodology, Writing—review & editing. Muhammad Rizwan: Formal analysis, Software, Validation, Writing—review & Editing. Shafaqat Ali: Project administration, Writing—review & editing.

Corresponding authors

Correspondence to Muhammad Arslan Ashraf, Muhammad Rizwan or Shafaqat Ali.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest regarding this paper.

Additional information

Handling Editor: Parvaiz Ahmad.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Rasheed, R., Hussain, I. et al. Allicin Decreases Phytotxic Effects of Petroleum Hydrocarbons by Regulating Oxidative Defense and Detoxification of Cytotoxic Compounds in Wheat. J Plant Growth Regul 42, 3632–3649 (2023). https://doi.org/10.1007/s00344-022-10826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10826-8

Keywords

Navigation