Skip to main content
Log in

Dissecting SEPALLATA3 Splicing Variant Functions During Arabidopsis Vegetative Growth by amiRNA Technology

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

SEPALLATA (SEP) genes encode E-class floral homeotic transcriptional factors involved in regulation of flowering. In the present work, artificial microRNA (amiRNA) technology was adopted to downregulate the expression levels of SEP3-2, SEP3-3 and SEP4. Silencing of SEP3-2 and SEP3-3 did not generate obvious phenotypic changes in the four types of floral organs. However, knockdown of SEP3-2 and SEP3-3 resulted in suppression of FLOWERING LOCUS T (FT) and GIGANTEA (GI), accompanied by a delay in flowering time. SEP3-2 can directly bind to CArG-boxes existing in the promoter of AGL17, AGL20, AGL42, CCA1, FT, TCP3, TCP12, while SEP3-3 can directly interact with CArG-boxes existing in the promoter of AGL15, AGL24, CUC2, MAF5 and TCP2, indicating the encoded products of two alternative splicing variants of SEP3 can affect distinct target genes. These results suggest that SEP3-2 and SEP3-3 are probably involved in controlling different developmental processes. Compared to wild-type plants, the vegetative growth of amiRNA-SEP3-2 and amiRNA-SEP3-3 transgenic plants was more vigorous, and the morphology of leaves was changed significantly, including a widening the blade, increased surface area, longer petiole and serrated margin. In amiRNA-SEP4 transgenic plants, sepals were converted into petaloid structures, and the number of floral organs in the outside three whorls was reduced. In addition, amiRNA-SEP4 transgenic plants presented a late-flowering phenotype, illustrating the important roles of SEP4 in floral transition. These results showed that SEP3-2 and SEP3-3, two splicing variants of SEP3, involved in morphogenesis of leaves and floral organ development by conferring transcriptional activity. Moreover, SEP4 genes participate in development of sepals, petals, stamens and carpels. All these results indicated that SEPALLATA genes of Arabidopsis possessed diversified functions. In addition to the roles in reproductive growth, these genes can also influence the vegetative growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adal AM, Binson E, Remedios L, Mahmoud SS (2021) Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early fowering and alter leaf morphology in Arabidopsis thaliana. Planta 254:54

    CAS  PubMed  Google Scholar 

  • Aguilar-Martínez JA, Sinha N (2013) Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development. Front Plant Sci 4:406

    PubMed  PubMed Central  Google Scholar 

  • Airoldi CA, Bergonzi S, Davies B (2010) Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci USA 107:18898–18902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL (2016) Active suppression of a leaf meristem orchestrates determinate leaf growth. Elife 5:e15023

    PubMed  PubMed Central  Google Scholar 

  • Balsemão-Pires E, Andrade LR, Sachetto-Martins G (2013) Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67:120–125

    PubMed  Google Scholar 

  • Castillejo C, Romera-Branchat M, Pelaz S (2005) A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Plant J 43:586–596

    CAS  PubMed  Google Scholar 

  • Coen E (2001) Goethe and the ABC model of flower development. C R Acad Sci III 324:523–530

    CAS  PubMed  Google Scholar 

  • Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E foral homeotic genes in rice (Oryza sativa). Plant J 61:767–781

    CAS  PubMed  Google Scholar 

  • Danisman S (2016) TCP transcription factors at the interface between environmental challenges and the plant’s growth responses. Front Plant Sci 7:1930

    PubMed  PubMed Central  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    CAS  PubMed  Google Scholar 

  • Duan KX, Willig CJ, De JR, Spollen WG, Zhang ZYJ (2018a) Transcriptomic analysis of Arabidopsis seedlings in response to an agrobacterium-mediated transformation process. Mol Plant Microbe Interact 31(4):445–459

    CAS  PubMed  Google Scholar 

  • Duan X, Ni Y, Zhang X, Yan G, Wang J, Zhou Y, Zhang K (2018b) Isolation and expression analysis of MADS-box gene related to flowering regulation in sweet cherry. J Fruit Sci 35(1):20–31 (in Chinese)

    Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    CAS  PubMed  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    CAS  PubMed  Google Scholar 

  • Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D (2014) A soybean MADS-box protein modulates foral organ numbers, petal identity and sterility. BMC Plant Biol 14:89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C (2018) Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 46:4966–4977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Immink RGH, Tonaco IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10:R24

    PubMed  PubMed Central  Google Scholar 

  • Jang S, Hong MY, Chung YY, An G (1999) Ectopic expression of tobacco MADS genes modulates fowering time and plant architecture. Mol Cells 9:576–586

    CAS  PubMed  Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    CAS  PubMed  Google Scholar 

  • Kohzaki H, Asano M (2016) Chromosome and genetic testing using ChIP assay. Front Biosci 8:298–302

    Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12:e1001835

    PubMed  PubMed Central  Google Scholar 

  • Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, Yamaji Y, Oshima K, Namba S (2015) Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signal Behav 10:e1042635

    PubMed  PubMed Central  Google Scholar 

  • Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435

    CAS  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1998) The Arabidopsis AGL9 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11:22–28

    CAS  Google Scholar 

  • Melzer R, Verelst W, Theißen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 37:144–157

    CAS  PubMed  Google Scholar 

  • Navaud O, Dabos P, Carnus E, Tremousaygue D, Hervé C (2007) TCP transcription factors predate the emergence of land plants. J Mol Evol 65:23–33

    CAS  PubMed  Google Scholar 

  • Neuwirth E (2014) RColorBrewer: ColorBrewer Palettes. R package version 1.1–2

  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    CAS  PubMed  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001a) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    CAS  PubMed  Google Scholar 

  • Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanofsky MF (2001b) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smaczniak C, Immink RGH, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QDP, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su CL, Chen WC, Lee AY, Chen CY, Chang YCA, Chao YT, Shih MC (2013) A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS ONE 8:e80462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Theiβen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Google Scholar 

  • Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S(2016).gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1

    Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    CAS  PubMed  Google Scholar 

  • Yang Y, Jack T (2004) Defining subdomains of the K domain important for protein–protein interactions of plant MADS proteins. Plant Mol Biol 55:45–59

    CAS  PubMed  Google Scholar 

  • Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59

    PubMed  Google Scholar 

  • Ye L, Wang B, Zhang W, Shan H, Kong H (2016) Gains and losses of cis-regulatory elements led to divergence of the Arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space, and level of expression and regulation of one paralog by the other. Plant Physiol 171:1055–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YX, Cheng ZJ, Zhang XS (2006) Overexpression of TaMADS1, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta 223:698–707

    CAS  PubMed  Google Scholar 

  • Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31300223, 30870194, J1210063), and the Major Project of Basic Research Program of Natural Sciences of Shaanxi Province (2021JZ-41).

Author information

Authors and Affiliations

Authors

Contributions

Y-Q M, Z-Q P, Q M, X-M T, K-L Z, and L Y performed the experiments. Y-Y M and X H helped in editing of the data. Z-Q X designed the experiments and wrote the article.

Corresponding author

Correspondence to Zi-Qin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Monica Colombo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YQ., Pu, ZQ., Meng, Q. et al. Dissecting SEPALLATA3 Splicing Variant Functions During Arabidopsis Vegetative Growth by amiRNA Technology. J Plant Growth Regul 42, 3529–3542 (2023). https://doi.org/10.1007/s00344-022-10815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10815-x

Keywords

Navigation