Skip to main content
Log in

Riboflavin Seed Priming Activates OsNHXs Expression to Alleviate Salinity Stress in Rice Seedlings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rice possesses well-developed mechanisms of managing excessive sodium concentration under salinity stress condition. However, such mechanisms are limited in sensitive rice varieties. In the present study, we elucidated the role of riboflavin (RIB, vitamin B2) in ameliorating salinity stress in a well-known salt-sensitive rice cultivar (Oryza sativa L. cv. Koshihikari). Rice seeds were soaked in 10-μM RIB solution for 24 h, air-dried, and then the germinated seeds were cultivated hydroponically for three weeks under 25-mM NaCl to stimulate salinity stress prior to harvest. RIB-treated seedlings exhibited higher biomass accumulation, higher Sodium (Na+) and Potassium (K+) concentrations in the roots, and higher K+ concentration in the leaf blades which led to lower Na+/K+ ratio in the leaf blades. Also, RIB-treated seedlings possessed higher Calcium (Ca), Magnesium (Mg), and Copper (Cu) concentrations in the leaf blades and Iron (Fe) concentration in the roots compared to the non-treated seedlings under salinity stress. The results may be attributed to alterations in the transcript levels of Na+ transporter-encoding genes (OsHKT2;1, OsNHX1, OsNHX2, OsNHX4, OsNHX5) in the roots and leaf blades and the halotolerance gene (OsHAL3) in the leaf blades. The results indicate that RIB-treated seedlings positively regulate Na+ and K+ uptake, in turn, enhancing tissue tolerance mechanisms of alleviating salinity stress in salt-sensitive rice cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75(2):321–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akter M, Oue H (2018) Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agriculture 8(10):164

    CAS  Google Scholar 

  • Al-Hakimi A, Hamada A (2001) Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol Plant 44(2):253–261

    Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36(2):229–239

    CAS  PubMed  Google Scholar 

  • Assaha DV, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:509

    PubMed  PubMed Central  Google Scholar 

  • Azami-Sardooei Z, França SC, De Vleesschauwer D, Höfte M (2010) Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol Mol Plant Pathol 75(1–2):23–29

    CAS  Google Scholar 

  • Bassil E, Ohto M-A, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell 23(1):224–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bassil E, Tajima H, Liang Y-C, Ohto M-A, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23(9):3482–3497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress-tolerance. Environ Exp Bot 94:33–45

    CAS  Google Scholar 

  • Cheng Y-W, Kong X-W, Wang N, Wang T-T, Chen J, Shi ZQ (2020) Thymol confers tolerance to salt stress by activating anti-oxidative defense and modulating Na+ homeostasis in rice root. Ecotoxicol Environ Saf 188:109894

    CAS  PubMed  Google Scholar 

  • Chuamnakthong S, Nampei M, Ueda A (2019) Characterization of Na+ exclusion mechanism in rice under saline-alkaline stress conditions. Plant Sci 287:110171

    CAS  PubMed  Google Scholar 

  • Deng B, Jin X, Yang Y, Lin Z, Zhang Y (2014) The regulatory role of riboflavin in the drought tolerance of tobacco plants depends on ROS production. Plant Growth Regul 72(3):269–277

    CAS  Google Scholar 

  • Espinosa-Ruiz A, Bellés JM, Serrano R, Culiáñez-Macià FA (1999) Arabidopsis thaliana AtHAL3: a flavoprotein related to salt and osmotic tolerance and plant growth. Plant J 20(5):529–539

    CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159

    CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233(1):175–188

    CAS  PubMed  Google Scholar 

  • Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31(4):529–542

    CAS  PubMed  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    CAS  PubMed  Google Scholar 

  • Hadi M, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35(13):2037–2054

    CAS  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33(4):552–565

    CAS  PubMed  Google Scholar 

  • Hefti MH, Vervoort J, Van Berkel WJ (2003) Deflavination and reconstitution of flavoproteins. Eur J Biochem 270(21):4227–4242

    CAS  PubMed  Google Scholar 

  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26(12):3003–3014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expressionin rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    CAS  PubMed  Google Scholar 

  • Jiménez-Arias D, García-Machado FJ, Morales-Sierra S, Suárez E, Pérez JA, Luis JC, Garrido-Orduña C, Herrera AJ, Valdés F, Sandalio LM, Borges AA (2019) Menadione sodium bisulphite (MSB): beyond seed-soaking. Root pretreatment with MSB primes salt stress tolerance in tomato plants. Environ Exp Bot 157:161–170

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lutts S, Kinet J, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant growth Regul 19(3):207–218

    CAS  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30

    Google Scholar 

  • Marschner, H. (2011) Marschner’s mineral nutrition of higher plants: Academic press

  • Mekawy AMM, Assaha DV, Yahagi H, Tada Y, Ueda A, Saneoka H (2015) Growth, physiological adaptation, and gene expression analysis of two Egyptian rice cultivars under salt stress. Plant Physiol Biochem 87:17–25

    CAS  PubMed  Google Scholar 

  • Mekawy AMM, Abdelaziz MN, Ueda A (2018) Apigenin pretreatment enhances growth and salinity tolerance of rice seedlings. Plant Physiol Biochem 130:94–104

    CAS  PubMed  Google Scholar 

  • Mekawy AMM, Assaha DV, Ueda A (2020) Differential salt sensitivity of two flax cultivars coincides with differential sodium accumulation, biosynthesis of osmolytes and antioxidant enzyme activities. J Plant Growth Regul 39(3):1119–1126

    CAS  Google Scholar 

  • Mishra P, Bhoomika K, Dubey R (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250(1):3–19

    CAS  PubMed  Google Scholar 

  • Miyamoto T, Ochiai K, Nonoue Y, Matsubara K, Yano M, Matoh T (2015) Expression level of the sodium transporter gene OsHKT2; 1 determines sodium accumulation of rice cultivars under potassium-deficient conditions. Soil Science and Plant Nutrition 61(3):481–492

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–668

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    CAS  PubMed  Google Scholar 

  • Nampei M, Jiadkong K, Chuamnakthong S, Wangsawang T, Sreewongchai T, Ueda A (2021) Different Rhizospheric pH Conditions Affect Nutrient Accumulations in Rice under Salinity Stress. Plants 10(7):1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Xu H (2016) Riboflavin-induced disease resistance requires the mitogen-activated protein kinases 3 and 6 in Arabidopsis thaliana. PLoS ONE 11(4):e0153175

    PubMed  PubMed Central  Google Scholar 

  • Rajamani S, Bauer WD, Robinson JB, Farrow JM III, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe Interact 21(9):1184–1192

    CAS  PubMed  Google Scholar 

  • Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4(4):265–276

    PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    CAS  PubMed  Google Scholar 

  • Sandoval FJ, Zhang Y, Roje S (2008) Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids. J Biol Chem 283(45):30890–31309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4(7):281–287

    CAS  PubMed  Google Scholar 

  • Sriskantharajah K, Osumi S, Chuamnakthong S, Nampei M, Amas JC, Gregorio GB, Ueda A (2020) Contribution of two different Na+ transport systems to acquired salinity tolerance in rice. Plant Sci 297:110517

    CAS  PubMed  Google Scholar 

  • Subramanyam K, Du Laing G, Van Damme EJ (2019) Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front Plant Sci 10:116

    PubMed  PubMed Central  Google Scholar 

  • Sun S-Y, Chao D-Y, Li X-M, Shi M, Gao J-P, Zhu M-Z, Yang HQ, Luan S, Lin H-X (2009) OsHAL3 mediates a new pathway in the light-regulated growth of rice. Nat Cell Biol 11(7):845–851

    CAS  PubMed  Google Scholar 

  • Ueda A, Yahagi H, Fujikawa Y, Nagaoka T, Esaka M, Calcaño M, González MM, Hernández Martich JD, Saneoka H (2013) Comparative physiological analysis of salinity tolerance in rice. Soil Science and Plant Nutrition 59(6):896–903

    CAS  Google Scholar 

  • Wangsawang T, Chuamnakthong S, Kohnishi E, Sripichitt P, Sreewongchai T, Ueda A (2018) A salinity-tolerant japonica cultivar has Na+ exclusion mechanism at leaf sheaths through the function of a Na+ transporter OsHKT 1;4 under salinity stress. J Agron Crop Sci 204(3):274–284

    CAS  Google Scholar 

  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal Methods 3(12):2854–2863

    CAS  Google Scholar 

  • Yonamine I, Yoshida K, Kido K, Nakagawa A, Nakayama H, Shinmyo A (2004) Overexpression of NtHAL3 genes confers increased levels of proline biosynthesis and the enhancement of salt tolerance in cultured tobacco cells. J Exp Bot 55(396):387–395

    CAS  PubMed  Google Scholar 

  • Zhang N, Wang X, Chen J (2009) Role of OsHAL3 protein, a putative 4’-phosphopantothenoylcysteine decarboxylase in rice. Biochemistry 74:61–67

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number 20KK0129 to AU.

Author information

Authors and Affiliations

Authors

Contributions

The authors have made the following declarations about their contributions. KJ, SW, and AU contributed to conception and design the experiments. KJ, MN, and SW performed the experiments and collected the data. KJ and MN contributed to analysis and data processing. KJ and AU contributed to writing and manuscript processing.

Corresponding author

Correspondence to Akihiro Ueda.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Handling Editor: Stefan de folter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiadkong, K., Nampei, M., Wangsawang, S. et al. Riboflavin Seed Priming Activates OsNHXs Expression to Alleviate Salinity Stress in Rice Seedlings. J Plant Growth Regul 42, 3032–3042 (2023). https://doi.org/10.1007/s00344-022-10768-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10768-1

Keywords

Navigation