Skip to main content
Log in

The Characterization of Arabidopsis Photorespiration D-glycerate 3-Kinase Mutants Generated by CRISPR/Cas9 and Identification of Its Interacting Proteins

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

D-Glycerate 3-kinase (GLYK, EC2.7.1.31) catalyzes the phosphorylation of glycerate to form 3-phosphoglycerate. However, knowledge about GLYK regulation is limited. In this study, the Arabidopsis Ler background glyk mutants were generated using CRISPR/Cas9 technology to elucidate the genetic regulation mechanisms of GLYK in future. Specifically, two sgRNAs targeting the Arabidopsis GLYK genomic sequence (At1g80380) were constructed into egg cell-specific expression CRISPR/Cas9 vector, and Ler plants were transformed by the floral dip method. A high-throughput screening and sequencing combined PCR (SSC-PCR) was developed to identify mutants generated by CRISPR/Cas9 technology using the DNA of T1 positive transgenic lines. By using this method, the edited GLYK lines were efficiently screened out from T1-positive transgenic lines. Thereafter, two independent homozygous lines, glyk-1 and glyk-3, were selected and further confirmed their genetic stability and absence of off-targets. The glyk-1 and glyk-3 showed typical photorespiration phenotype, and the chlorophyll content and Fv/Fm ratio of glyk-1 and glyk-3 gradually decreased when they were moved from 3000 ppm CO2 to 400 ppm CO2. Finally, these two mutants became lethal after nine-day exposure to 400 ppm CO2. Furthermore, six proteins have been screened out for their potential interactions with AtGLYK using yeast two-hybrid system in a previous study, while in this study, only two proteins, At1g78380 (AtGSTU19) and At4g37980 (AtCAD7), were further confirmed their interactions with AtGLYK using BiFC and LCI approaches, respectively. In summary, the developed SSC-PCR method here can be applied for the quick screening and identification of CRISPR/Cas9-edited mutants in plants; the glyk mutants and the GLYK-interacting proteins reported in this study will facilitate future understanding of the genetic regulation mechanisms of AtGLYK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

We declared that all the materials and data reported in this article would be available upon request.

Code Availability

Not applicable.

Abbreviations

BiFC:

Bimolecular fluorescence complementation

Cas9:

CRISPR-associated protein 9

ORF:

Open reading frame

CoIP:

Co-immunoprecipitation

CRISPR:

Clustered regularly interspaced short palindromic repeats

GLYK:

D-Glycerate 3-kinase

LCI:

Luciferase complementation imaging

NHEJ:

Non-homologous end-joining

PAM:

Protospacer adjacent motif

2-PG:

2-Phosphoglycolate

3-PGA:

3-Phosphoglycerate

ppm:

Parts per million

RuBP:

Ribulose-1, 5-disphosphate

sgRNA:

Single guide RNA

SSC-PCR:

Screening and sequencing combined PCR

TALENs:

Transcription activator-like effector nucleases

ZFNs:

Zinc finger nucleases

References

  • Ahammed GJ, Li X, Zhang GQ et al (2018) Tomato photorespiratory glycolate-oxidase-derived H2O2 production contributes to basal defence against Pseudomonas syringae. Plant Cell Environ 41:1126–1138

    Article  CAS  PubMed  Google Scholar 

  • Bartsch O, Hagemann M, Bauwe H (2008) Only plant-type (GLYK) glycerate kinases produce D-glycerate 3-phosphate. FEBS Lett 582:3025–3028

    Article  CAS  PubMed  Google Scholar 

  • Bartsch O, Mikkat S, Hagemann M, Bauwe H (2010) An autoinhibitory domain confers redox regulation to maize glycerate kinase. Plant Physiol 153:832–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bewg WP, Ci D, Tsai CJ (2018) Genome editing in trees: from multiple repair pathways to long-term stability. Front Plant Sci 9:1732

    Article  PubMed  PubMed Central  Google Scholar 

  • Boldt R, Edner C, Kolukisaoglu Ü et al (2005) D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell 17:2413–2420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB et al (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 system. Plant Physiol 166:1292–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen HM, Zou Y, Shang YL et al (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiol 146:323–324

    Article  Google Scholar 

  • Chen YE, Wu N, Zhang ZW et al (2019) Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters. Front Plant Sci 10:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citovsky V, Lee LY, Vyas S et al (2006) Subcellular localization of interacting proteins by bimolecular fluorescence complementation in planta. J Mol Biol 362:1120–1131

    Article  CAS  PubMed  Google Scholar 

  • Colina-Tenorio L, Miranda-Astudillo H, Dautant A et al (2019) Subunit Asa3 ensures the attachment of the peripheral stalk to the membrane sector of the dimeric ATP synthase of Polytomella sp. Biochem Bioph Res Co 509:341–347

    Article  CAS  Google Scholar 

  • Dixon DP, Hawkins T, Hussey PJ et al (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60:1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong X, Wang M, Ling N et al (2016) Potential role of photosynthesis-related factors in banana metabolism and defense against Fusarium oxysporum f. sp. cubense. Environ Exp Bot 129:4–12

    Article  CAS  Google Scholar 

  • Edwards R, Dixon DP (2005) Plant Glutathione Transferases. Methods Enzymol 401:169–186

    Article  CAS  PubMed  Google Scholar 

  • Eisenhut M, Brautigam A, Timm S et al (2017) Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol Plant 10:47–61

    Article  CAS  PubMed  Google Scholar 

  • Eisenhut M, Roell MS, Weber APM (2019) Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol 223:1762–1769

    Article  PubMed  Google Scholar 

  • El-Nashar YI, Asrar AA (2016) Phenotypic and biochemical profile changes in calendula (Calendula officinalis L.) plants treated with two chemical mutagenesis. Genet Mol Res 15(2):gmr.15028071. https://doi.org/10.4238/gmr.15028071

    Article  PubMed  Google Scholar 

  • Feng ZY, Mao YF, Xu NF et al (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Bauwe H (2020) Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. Plant J 102:666–677

    Article  CAS  PubMed  Google Scholar 

  • Gao CX (2021) Genome engineering for crop improvement and future agriculture. Cell 184:1621–1635

    Article  CAS  PubMed  Google Scholar 

  • Guo JG, Li K, Jin LF et al (2018) A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods 14:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Bauwe H (2016) Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35:109–116

    Article  CAS  PubMed  Google Scholar 

  • Horváth E, Bela K, Gallé Á et al (2020) Compensation of mutation in Arabidopsis glutathione transferase (AtGSTU) genes under control or salt stress conditions. Int J Mol Sci 21:2349

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua YF, Wang C, Huang J et al (2017) A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 44:207–213

    Article  PubMed  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li SC et al (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636

    Article  PubMed  Google Scholar 

  • Kiedrowski S, Kawalleck P, Hahlbrock K et al (1992) Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J 11:4677–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleczkowski LA, Randall DD (1985) Light and thiol activation of maize leaf glycerate kinase: the stimulating effect of reduced thioredoxins and ATP. Plant Physiol 79:274–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleczkowski LA, Randall DD (1986) Thiol-dependent regulation of glycerate metabolism in leaf extracts: the role of glycerate kinase in C4 plants. Plant Physiol 81:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleczkowski LA, Randall DD (1988) Purification and characterization of D-glycerate-3-kinase from maize leaves. Planta 173:221–229

    Article  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labrou NE, Papageorgiou AC, Pavli O et al (2015) Plant GSTome: structure and functional role in xenome network and plant stress response. Curr Opin Biotech 32:186–194

    Article  CAS  PubMed  Google Scholar 

  • Lai ZSY, Huang ZT, Sun JT et al (2022) The recent progress of CRISPR/Cas genome editing technology and its application in crop improvement. Chin Sci Bull 67:1923–1937. https://doi.org/10.1360/TB-2022-0197 (in Chinese)

    Article  Google Scholar 

  • Li JW, Yang JP, Fei PP et al (2009) Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Res 114:426–432

    Article  Google Scholar 

  • Liang YP, Zeng XY, Peng XX et al (2018) Arabidopsis glutamate:glyoxylate aminotransferase 1 (Ler) mutants generated by CRISPR/Cas9 and their characteristics. Transgenic Res 27:61–74

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Lai EM (2017) Protein-protein interactions: co-immunoprecipitation. Methods Mol Biol 1615:211–219

    Article  PubMed  Google Scholar 

  • Liu H, Ding YD, Zhou YQ et al (2017) CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant 10:530–532

    Article  CAS  PubMed  Google Scholar 

  • Ma XL, Zhang QY, Zhu QL et al (2015) A robust CRISPR/Cas9 system for convenient high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Manghwar H, Li B, Ding X et al (2020) CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci 7:1902312

    Article  CAS  Google Scholar 

  • Meistertzheim AL, Heritier L, Lejart M (2017) High-Resolution Melting of 18S rDNA sequences (18S-HRM) for discrimination of bivalve’s species at early juvenile stage: application to a spat survey. Mar Biol 164:133

    Article  Google Scholar 

  • Nadakuduti SS, Starker CG, Ko DK et al (2019) Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts. Front Plant Sci 10:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie WF, Wang JY (2021) Actin-related protein 4 interacts with PIE1 and regulates gene expression in Arabidopsis. Genes 12:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obata T, Florian A, Timm S et al (2016) On the metabolic interactions of (photo) respiration. J Exp Bot 67:3003–3014

    Article  CAS  PubMed  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation and modification. Annu Rev Plant Physiol Plant Mol Biol 35:415–422

    Article  CAS  Google Scholar 

  • Pan CT, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SK, Lee HW, Kim MJ et al (2018) LBD18 uses a dual mode of a positive feedback loop to regulate ARF expression and transcriptional activity in Arabidopsis. Plant J 95:233–251

    Article  CAS  PubMed  Google Scholar 

  • Peterhansel C, Horst I, Niessen M et al (2010) Photorespiration. Arabidopsis Book 8:e0130

    Article  PubMed  PubMed Central  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Ramlee MK, Yan TD, Cheung AMS et al (2015) High-throughput genotyping of CRISPR/Cas9-mediated mutants using fluorescent PCR-capillary gel electrophoresis. Sci Rep 5:15587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugini E, Silvestri C, Ceccarelli M et al (2016) Mutagenesis and biotechnology techniques as tools for selecting new stable diploid and tetraploid olive genotypes and their dwarfing agronomical characterization. HortScience 51:799–804

    Article  Google Scholar 

  • Sahida S, Roy C, Shee D et al (2021) Jacalin domain-containing protein OsSalT interacts with OsDREB2A and OsNAC1 to impart drought stress tolerance in planta. Environ Exp Bot 183:104362

    Article  Google Scholar 

  • Schmelzer E, Krüger-Lebus S, Hahlbrock K (1989) Temporal and spatial patterns of gene expression around sites of attempted funga1 infection in parsley leaves. Plant Cell 1:993–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunil B, Saini D, Bapatla RB et al (2019) Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. Photosynth Res 139:67–79

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Ikeda A, Shiojiri K et al (2018) Identification of a hexenal reductase that modulates the composition of green leaf volatiles. Plant Physiol 178:552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Tang AY (2017) Applications and roles of the CRISPR system in genome editing of plants. J Forestry Res 28:15–28

    Article  CAS  Google Scholar 

  • Timm S (2020) The impact of photorespiration on plant primary metabolism through metabolic and redox regulation. Biochem Soc Trans 48:2495–2504

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Hagemann M (2020) Photorespiration-how is it regulated and regulates overall plant metabolism? J Exp Bot 71:3955–3965

    Article  CAS  PubMed  Google Scholar 

  • Timm S, Woitschach F, Heise C et al (2019) Faster removal of 2-phosphoglycolate through photorespiration improves abiotic stress tolerance of Arabidopsis. Plants-Basel 8:563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushijima T, Hanada K, Gotoh E et al (2017) Light controls protein localization through phytochrome-mediated alternative promoter selection. Cell 171:1316–1325

    Article  CAS  PubMed  Google Scholar 

  • Valarmathi M, Sasikala R, Rahman H et al (2019) Development of salinity tolerant version of a popular rice variety improved white ponni through marker assisted back cross breeding. Plant Physiol Rep 24:262–271

    Article  Google Scholar 

  • Vogiatzakis N, Kekou K, Sophocleous C et al (2013) Screening human genes for small alterations performing an enzymatic cleavage mismatched analysis (ECMA) protocol. Mol Biotechnol 55:1–9

    Article  PubMed  Google Scholar 

  • Voss I, Sunil B, Scheibe R et al (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722

    Article  CAS  PubMed  Google Scholar 

  • Wang ZP, Xing HL, Dong L et al (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Tian YS, Xing XJ et al (2016) Over-expression of AtGSTU19 provides tolerance to salt, drought and methyl viologen stresses in Arabidopsis. Physiol Plantarum 156:164–175

    Article  CAS  Google Scholar 

  • Zhang CF, Kitsberg D, Chy H et al (2005) Transposon-mediated generation of targeting vectors for the production of gene knockouts. Nucleic Acids Res 33:e24

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Su JB, Duan S et al (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang JS, Wei PL et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Xu YY, Xie ZW et al (2016) Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels. Mol Plant 9:737–748

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW, Bai Y, Wu GH et al (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724

    Article  CAS  PubMed  Google Scholar 

  • Zhang XX, Yang LN, Wang F et al (2018) Development of a simple and cost-effective method based on T7 endonuclease cleavage for detection of single nucleotide polymorphisms. Genet Test Mol Bioma 22:719–723

    Article  CAS  Google Scholar 

  • Zhu XX, Xu YJ, Yu SS et al (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zybailov B, Rutschow H, Friso G et al (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3(4):e1994

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Qijun Chen (China Agricultural University, Beijing) for kindly providing the CRISPR/Cas9 vector system.

Funding

This research was sponsored by the Science and Technology Funding of Guangzhou (Grant No. 201707010032).

Author information

Authors and Affiliations

Authors

Contributions

XH and XP: designed and supervised the research. YL, ZL, QZ, FW, SY, BX, YL, and WS: conducted the experiments. YL and ZL: analyzed the data. XH: wrote the manuscript. XH and WW: finalized the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Xuewen Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Handling Editor: Golam Jalal Ahammed.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Lai, Z., Wang, W. et al. The Characterization of Arabidopsis Photorespiration D-glycerate 3-Kinase Mutants Generated by CRISPR/Cas9 and Identification of Its Interacting Proteins. J Plant Growth Regul 42, 2458–2473 (2023). https://doi.org/10.1007/s00344-022-10716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10716-z

Keywords

Navigation