Skip to main content
Log in

Physiological, Biochemical, and Molecular Responses of Young Cacao Plants Grown in Coastal Plain Compacted Soil, with Location and Phosphorus Limitation

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In the cacao growing region of Bahia, Brazil, there are large areas of coastal plain soils, which normally do not support cacao cropping because of their adverse chemical and physical limitations. The main objectives of this work were to evaluate growth, photosynthesis, antioxidative metabolism, and gene expression in young plants of CCN 51 cacao genotype grown in coastal plain compacted soil, with location and phosphorus limitation. A cohesive yellow oxisol was placed in polyvinyl chloride tubes with 0.24 m (height) × 0.1 m (internal diameter). The tubes were subdivided into three rings of 0.08 m height connected with tape. In the upper and lower rings soil density was maintained at 1 kg dm−3. In the lower ring, two levels of soil P (low—200 mg dm−3 soil and ideal—400 mg dm−3 soil) were evaluated. In the middle ring five soil densities (1; 1.3; 1.4, 1.5, and 1.7 kg dm−3) were maintained. Changes were observed in the leaves number, leaf area and root dry biomass. There were variations in the activity of dismutase superoxide, catalase, ascorbate peroxidase and guaiacol peroxidase enzymes, involved in antioxidative leaf and root metabolism. Changes in the expression of the Cu–Zn–sodcyt, Cu–Zn–sodchl and per-1 gene transcripts were observed. Mechanical stress promoted by soil compaction, associated to variations in dose and P location, reduced the root length of the young cacao plants in relation to the volume, increased its diameter in the compacted layer and decreased the activity of most of the enzymes and expression of genes related to antioxidative metabolism, mainly in root level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  • Aguiar Netto AO, Nacif PGS (1988) Morphological and physical-water characterization of soils representative of the Recôncavo Baiano, I. Determination of field capacity "in situ" and its relations with data obtained in the laboratory. Cruz das Almas-BA: UFBA 59 p

  • Almeida A-AF, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19:425–448

    Article  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Alvarenga RC, Costa LM, Moura Filho W, Regazzi AJ (1996) Growth of legume roots in artificially compacted soil layers. Braz J Soil Sci Camp 20:319–326

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voeseneck LACJ (2008) Flooding stress: acclimations and genetic diversity. Ann Rev Plant Biol Palo Alto 59:313–339

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis In vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Application of chlorophyll fluorescence can 35 improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Matamoros MA, Udvardi M, Dalton DA (2010) Recent insights into antioxidant defenses of legume root nodules. New Phytol 188:960–976

    Article  CAS  PubMed  Google Scholar 

  • Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:59–68

    Article  CAS  PubMed  Google Scholar 

  • Bertolde FZ, Almeida A-AF, Corrêa RX, Gomes FP, Gaiotto FA, Baligar VC, Loguercio LL (2009) Molecular, physiological and morphological analysis of waterlogging tolerance in clonal genotypes of Theobroma cacao L. Tree Physiol 30:56–67

    Article  PubMed  Google Scholar 

  • Bertolde FZ, Almeida A-AF, Pirovani CP (2014) Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding. PLoS ONE 9(10):e108705

    Article  PubMed  PubMed Central  Google Scholar 

  • Bindraban PS, Dimkpa CO, Pandey R (2020) Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 56:299–317

    Article  CAS  Google Scholar 

  • Bingham IJ, Bengough AG, Rees RM (2010) Soil compaction–N interactions in barley: root growth and tissue composition. Soil Tillage Res 106:241–246

    Article  Google Scholar 

  • Bolhár-Nordenkampf HR, Öquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolhár-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in changing environment: a field and laboratory manual. Chapman e Hall, London, pp 193–206

    Google Scholar 

  • Branco MCS, Almeida A-AF, Dalmolina AC, Ahnert D, Baligar VC (2017) Influence of low light intensity and soil flooding on cacao physiology. Sci Hortic 217:243–257

    Article  Google Scholar 

  • Breman H, Groot JJR, van Keulen H (2001) Resource limitations in Sahelian agriculture. Glob Environ Chang 11:59–68

    Article  Google Scholar 

  • Casanova M, Salazar O, Seguel O, Luzio W (2013) The soils of Chile. Springer, Cham

    Book  Google Scholar 

  • Chan KY, Oates A, Swan AD, Hayes RC, Dear BS, Peoples MB (2006) Agronomic consequences of tractor wheel compaction on clay soil. Soil Till Res 89:13–21

    Article  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Weil RR (2010) Penetration of cover crop roots through compacted soils. Plant Soil 331:31–43

    Article  CAS  Google Scholar 

  • Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plantarum 33(2):273–278

    Article  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–886

    Article  CAS  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MM, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EV, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947

    Article  PubMed  Google Scholar 

  • Conroy JP, Smillie RM, Kuppers M, Bevege DI, Barlow EW (1986) Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol 81:423–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MAPC (1993) Conduction and retention of water in a cohesive Alico Yellow Latosol of the Recôncavo Baiano. Cruz das Almas-BA: UFBA 125 p (Masters dissertation)

  • Daniels RB (1987) Soil erosion and degradation in the southern Piedmont of the USA. In: Wolman M, Fournier F (eds) Land transformation in agriculture. Wiley, New York, pp 407–428

    Google Scholar 

  • Dexter AR (2004) Soil physical quality. Effects of soil texture, density, and organic matter, and effects on root growth, part I. Theory Geoderma 120:201–214

    Article  Google Scholar 

  • Dipierro N, Mondelli D, Paciolla C, Brunetti G, Dipierro S (2005) Changes in ascorbato system in the response of pumpkin (Curcubita pepo L.) roots to aluminum stress. J Plant Physiol Jena 162:529–536

    Article  CAS  Google Scholar 

  • Eavis BW (1972) Soil physical conditions affecting seedling growth I. Mechanical impedance, aeration and moisture availability as influenced by bulk density and moisture levels in a sandy loam soil. Plant Soil 36:613–622

    Article  Google Scholar 

  • Embrapa (2009) Manual of chemical analyzes of soils, plants and fertilizers. 2nd edition revised and extended - Brasília DF 627 p

  • Fageria NK, Oliveira JP (2014) Nitrogen, phosphorus and potassium interactions in upland rice. J Plant Nutr 37:1586–1600

    Article  CAS  Google Scholar 

  • Fonsêca MHP, Guerra HOC, Lacerda RD, Barreto AN (2007) Uso de propriedades físico-hídricas do solo na identificação de camadas adensadas nos Tabuleiros Costeiros, Sergipe. Revista Brasileira de Engenraria Agrícola e Ambiental 11(4):368–373

    Article  Google Scholar 

  • Freddi OS, Centurion JF, Beutler NA, Aratani RG, Leonel CL (2007) Soil compaction in root growth and yield of maize crop. Braz Soc Soil Sci 31:627–636

    Google Scholar 

  • Furlani AMC, Bataglia OC, Furlani PR, Azzini LE, Camargo OBA (1983) Evaluation of rice genotypes on the efficiency of the use of phosphorus in nutrient solution and soil. Braz Soc Soil Sci Camp 7(3):291–303

    Google Scholar 

  • Gama-Rodrigues AC (2004) Nutrient cycling in agroforestry systems in the tropical region: Functionality and Sustainability. In: Müller MW, Gama-Rodrigues AC, Brandão ICFL, Serono MHCF (eds) Agroforestry systems, trend of ecological agriculture in the tropics: sustenance of life and sustenance of life. 1st ed. Ilhéus-Ba: Brazilian Society of Agroforestry Systems: Executive Committee of the cacao plantation 67–88

  • Gesteira AS, Micheli F, Carels N, Silva AC, Gramacho KP, Schuster I, Macedo JN, Pereira GA, Cascardo JC (2007) Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot 100:129–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannopolitis CN, Ries SK (1997) Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  Google Scholar 

  • Gill SS, Tujeta N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goss MJ (1977) Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.): I. Effects on the elongation and branching of seminal root axes. J Exp Bot 28:96–111

    Article  Google Scholar 

  • Grzesiak MT (2009) Impact of soil compaction on root architecture, leaf water status, gas exchange and growth of maize and triticale seedlings. Plant Root 3:10–16

    Article  CAS  Google Scholar 

  • Grzesiak S, Grzesiak MT, Filek W, Hura T, Stabryła J (2002) The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiol Plant 24:331–342

    Article  Google Scholar 

  • Grzesiak MT, Jonowiak F, Szczyrek P, Kaczanowska K, Ostrowska A, Rut G, Hura T, Rzepka A, Grzesiak S (2016) Impact of soil compaction stress combined with drought or waterlogging on physiological and biochemical markers in two maize hybrids. Acta Physiol Plant 38:109

    Article  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Håkansson I, Voorhees WB, Riley H (1988) Vehicle and wheel factors influencing soil compaction and crop response in different traffic regimes. Soil Till Res 35:239–282

    Article  Google Scholar 

  • Havir EA, Mchale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, del Rio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Article  CAS  Google Scholar 

  • Hoad SP, Russell G, Lucas ME, Bingham IJ (2001) The management of wheat, barley, and oat root systems. Adv Agron 74:193–246

    Article  CAS  Google Scholar 

  • Jacomine PKT (1996) Distribuição geográfica, características e classificação dos solos coesos dos tabuleiros costeiros. In: Reunião Técnica sobre Solos Coesos dos Tabuleiros Costeiros, 1996, Cruz das Almas. Anais. Aracaju : Embrapa-CPATC, pp 13–26

  • Jourgholami M, Khoramizadeh A, Zenner EK (2016) Effects of soil compaction on seedling morphology, growth, and architecture of chestnut-leaved oak (Quercus castaneifolia L). iForest-Biogeosciences and Forestry 818.

  • Kar M, Mishra D (1976) Catalase, Peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovácik J, Grúz J, Backor M, Tomko J, Strnad M, Repcàk M (2007) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62(2):145–152

    Article  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8:10

    Article  Google Scholar 

  • Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc B 352:997–1010

    Article  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonel CL, Freddi OS, Beutler NA, Centurion MAPC, Centurion JF (2007) Influence of soil compaction on root growth and peanut yield. Sci Jaboticabal 35(1):51–60

    Google Scholar 

  • Liu Y, Schieving F, Stuefer JF, Anten NP (2007) The effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant. Ann Bot 99:121–130

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression. Data using real-time quantitative PCR and the 2-DDC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging: an architectural adaptation adaptation to low phosphorus availability. Plant Soil 237(2):225–237

    Article  CAS  Google Scholar 

  • Machado RAF, Durães FOM, Rodrigues JD, Magalhães PC, Cantão FRO (2004) Chlorophyll fluorescence analysis in contrastant maize lineages for drought tolerance submitted to two levels of nitrogen. XXV Brazilian Congress on Corn and Sorghum. Cuiabá

  • Markewich HW, Pavich MJ, Buell GR (1990) Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States. Geomorphology 3:417–447

    Article  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene net work of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 6:300–309

    Article  Google Scholar 

  • Moran J, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas R, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Mullins CE, Macleod DA, Northcote KH, Tisdall JM, Young IM (1990) Hardsetting soils: behaviour, ocurrence and management. Adv soil sci 11:37–108

  • Mullins CE, Young IM, Benghough AG, Ley GJ (1987) Hard-setting soils. Soil Use Manag 3(2):79–83. https://doi.org/10.1111/j.1475-2743.1987.tb00715.x

    Article  Google Scholar 

  • Naido G, STewart JMcd, Lewis RJ (1978) Accumulation sites of Al in snapbean and cotton roots. Agron J 70(3):489–492

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nascimento JL, de Almeida AF, Barroso JP, Mangabeira PAO, Ahnert D, Sousa AGR, Silva JVS, Baligar VC (2018) Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr(III) in soil. Ecotoxicol Environ Saf 159:272–283

    Article  PubMed  Google Scholar 

  • NRCS – USDA – Natural Resources Conservation Service – USDA (2008) https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053256.pdf

  • Paiva AQ, Souza LS, Carvalho LA, Santana MB, Rodrigues ACV, Fukuda WMG, Ribeiro LS (2006) Behavior of cassava genotypes submitted to artificial soil compaction. XVI Brazilian Meeting on Soil and Water Management and Conservation, Magistra, Cruz Das Almas, BA 18(3):194–199

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 6:95–102

    Article  Google Scholar 

  • Pandey VP, Awasthi M, Singh S, Tiwari S, Dwivedi UN (2017) A comprehensive review on function and application of plant peroxidases. Biochem Anal Biochem 6:308

    Article  Google Scholar 

  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS (2015) ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfeifer J, Faget M, Walter A, Blossfeld S, Fiorani F, Schurr U, Nagel KA (2014) Spring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation. Funct Plant Biol 41:581–597

    Article  CAS  PubMed  Google Scholar 

  • Pincelli RP (2010) Tolerance to water deficit in sugarcane cultivars 16 evaluated by means of morphophysiological variables. Dissertation (Faculty 17 of Agronomic Sciences of UNESP - Botucatu Campus). State University 18 Júlio de Mesquita Filho. Botucatu – SP 78p

  • Popova L, van Dusschoten D, Nagel KA, Fiorani F, Mazzolai B (2016) Plant root tortuosity: an indicator of root path formation in soil with different composition and density. Ann Bot 118:685–698

    Article  PubMed  PubMed Central  Google Scholar 

  • Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602

    Article  CAS  PubMed  Google Scholar 

  • Potocka I, Szymanowska-Pulka J, Karczewski J, Nakielski J (2011) Effect of mechanical stress on Zea root apex, I, mechanical stress leads to the switch from closed to open meristem organization. J Exp Bot 62(13):4583–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehem BC, Almeida A-AF, Santos IC, Gomes FP, Pirovani CP, Romero P, Botía P (2011) Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almonds tress under semiarid conditions. Environ Exp Bot 56:158–173

    Google Scholar 

  • Reis GSM, Almeida AFD, Mangabeira PAO, Santos CId, Pirovani CP, Ahnert D (2018) Mechanical stress by wind in leaves of Theobroma cacao: photosynthetic, molecular, antioxidant and ultrastructural responses. PLoS ONE 13(6):e0198274

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezende JO (2000) Solos coesos dos Tabuleiros Costeiros: limitações agrícolas e manejo. Salvador: SEAGRI, SPA, p 117 (Série Estudos Agrícolas, 1)

  • Rich SM, Watt M (2013) Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. J Exp Bot 64:1193–1208

    Article  CAS  PubMed  Google Scholar 

  • Roselem CA, Almeida ACS, Sacramento LVS (1994) Root system and soybean nutrition as a function of soil compaction. Bragantia 53(2):259–266

    Google Scholar 

  • Rosolem CA, Foloni JSS, Tiritan CS (2002) Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res 65:109–115

    Article  Google Scholar 

  • Santana MBM, Cabala-Rosand P, Santana CJL (1988) Nutritional requirements and use of fertilizers in cocoa production systems, Ilhéus CEPEC/CEPLAC

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:26

    Google Scholar 

  • Shaw JN (2002) Ultisols. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker Publishers, New York. ISBN: 0-8247-0634-X, Online ISBN: 0-8247-0518-1

  • Shaw JN, Hajek BF, Beck JM (2010) Highly weathered mineralogy of select soils from Southeastern U.S. coastal plain and piedmont landscapes. Geoderma 154:447–456

    Article  CAS  Google Scholar 

  • Shi-Sheng KE (2007) Effects of copper on the photosynthesis and oxidative metabolism of Amaranthus tricolor seedlings. Agric Sci China 6:1182–1192

    Article  Google Scholar 

  • Silva LF, Melo AAO, Carvalho FR, Dias ACCP (1967) Characteristics of the main cocoa soils of Bahia. In: Proceeding II International Cocoa Research Conference, pp 412–416

  • Soil Survey Staff (2014) Soil survey field and laboratory methods manual. v.2. Soil Surv. Invest. Rep. 51. Natl. Soil Surv. Ctr., Lincoln

  • Souza LS (1996) Use and management of the cohesive soils of the coastal boards. In: Technical Meeting on Soils coesos of Coastal Boards. Research and development for the Coastal Tracks. Cross of the Souls BA, Anais ...Aracaju SE: EMBRAPA-CPATC, pp 36–75

  • Souza LS, Souza LD, Paiva AQ, Rodrigues ACV, Ribeiro LS (2002) Density of roots of citrus in an orchard implanted in a toposequence of soils of tray of the State of Bahia. In: Brazilian meeting on soil and water management and conservation 14 Cuiabá

  • Souza LD, Sobrinho APC, Ribeiro LS, Souza LS, Ledo CAS (2004) Avaliação De Plantas Cítricas Em Diferentes Profundidades De Plantio Em Latossolo Amarelo Dos Tabuleiros Costeiros Revista Brasileira De Fruticultura Jaboticabal 26(2):241–244

    Google Scholar 

  • Souza Junior JO, Sodré GA, Neves JCL (2018) Fertilidade do solo, correção da acidez e recomendação de adubação para o cacaueiro. In: Cacau - cultivo, pesquisa e inovação (Org.: Souza Junior, J.O.). Editus, Ilhéus-BA, pp 333–377

  • Stirzaker RJ, Passioura JB, Wilms Y (1996) Soil structure and plant growth: impact of bulk density biopores. Plant Soil 185(1):151–162

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2013) Plant physiology. 5th ed. Porto Alegre, Artmed

  • Unger PW, Kaspar TC (1994) Soil compaction and root growth: a review. Agron J 86:759–766

    Article  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    Article  CAS  Google Scholar 

  • Ying Z, Peth S, Krummelbein J, Horn R, Wang Z, Steffens M, Hoffmann C, Peng X (2007) Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecol Model 205:241–254

    Article  Google Scholar 

  • Zhang H, Zhang F, XiaY WG, Shen Z (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn superoxide dismutase. J Hazard Mater 178:834–843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thanks the Fundação de Amparo à Pesquisa do Estado da Bahia—FAPESB, Brazil, for the concession of a fellowship of the doctoral study. The second author gratefully acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnological (CNPq) for the concession of a fellowship of scientific productivity. We thank Marshall Elson for excellent review of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Alex-Alan Furtado de Almeida.

Ethics declarations

Conflict of interest

The authors declare that have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Handling Editor: Golam Jalal Ahammed.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosto, T.F., de Almeida, AA.F., Oliveira, B.R.M. et al. Physiological, Biochemical, and Molecular Responses of Young Cacao Plants Grown in Coastal Plain Compacted Soil, with Location and Phosphorus Limitation. J Plant Growth Regul 42, 2389–2407 (2023). https://doi.org/10.1007/s00344-022-10712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10712-3

Keywords

Navigation