Skip to main content
Log in

Chitosan Polymerized Silica Composite as a Potential Silicon Source: Modulation on Antioxidant Enzymes, Ionic Homeostasis, and Grain Quality in Maize Plants Under Na+ Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Chitosan based composites are environment friendly adsorbents, widely used in metal sorption and wastewater treatment; however, their use in agriculture under soil salinity has not been explored so far. Therefore, the present study was designed to select the best material [on silicon (Si) concentration basis] from different naturally occurring adsorbents and then evaluate the relative suitability of Si application methods for enhancing maize crop defensive mechanism, its ionic concentration and nutritional value under salt stress. Two maize cultivars: salt-sensitive (EV1089) and salt-tolerant (Syngenta-8441) were sown in the soil at pot scale. Chitosan polymerized silica (CP-Si) composite was selected as a best source on the basis of Si concentration (Si ~ 96%). Characterization of CP-Si was performed through scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), X-Ray fluorescence (XRF), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. Five CP-Si application rates such as control, Si1 (1 mM soil Si), Si2 (1% foliar Si at six leaf stage), Si3 (1% foliar Si at six leaf stage + 1% at twelve leaf stages), Si4 (foliar Si at twelve leaf stage), and two salinity rates (Control, 60 mM NaCl) were applied. Results revealed the enhanced activities of SOD and APX (148 and 134%), respectively, owing to 64% reduction in H2O2 contents by double foliar CP-Si application in Syngenta-8441under salt stress. This enhancement of antioxidant activities strengthened the salt stress tolerance mechanism of Syngenta-8441 as indicated by SEM analysis showing many rough and funnel shaped pores in surface and EDX spectra of the CP-Si+Na+ composite thus, confirming the increase in Na adsorption on CP-Si-soil interface. The increments in shoot K and Si concentrations to improve maize grain quality parameters further supported the effectiveness of CP-Si+Na+ composite in salt stress. These results proved CP-Si as an excellent Si source to enhance the maize yield under salt stress conditions either through soil or foliar application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin M, Ahmad R, Basra SMA, Murtaza G (2014) Silicon induced improvement in morpho-physiological traits of maize (Zea mays L.) under water deficit. Pak J Agric Sci 51:187–196

    Google Scholar 

  • An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015) Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Reg 76:211–223. https://doi.org/10.1007/s10725-014-9991-z

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis. In: Helrich K (ed) The association of official’s analytical chemists, 7th edn. Association of official analytical chemists, Arlington, Virginia

    Google Scholar 

  • Bybordi A (2015) Influence of exogenous application of silicon and potassium on physiological responses, yield, and yield components of salt-stressed wheat. Commun Soil Sci Plant Anal 46:109–122

    Article  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227. https://doi.org/10.1104/pp.98.4.1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39(6):1118–1119

    Article  CAS  Google Scholar 

  • Esnault R, Chibbar RN (1997) Peroxidases and plant defense. Plant Perox News Lett 10:34–41

    Google Scholar 

  • Farooq MA, Dietz KJ (2015) Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front Plant Sci 6:994

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35(2):461–481

    Article  CAS  Google Scholar 

  • Farooq MA, Detterbeck A, Clemens S, Dietz KJ (2016) Silicon-induced reversibility of cadmium toxicity in rice. J Exp Bot 67(11):3573–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq MA, Niazi AK, Akhtar J, Saifullah FM, Souri Z, Karimi N (2019) Acquiring control: the evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol Biochem 141:353–369

    Article  CAS  PubMed  Google Scholar 

  • Flam-Shepherd R, Huynh WQ, Coskun D, Hamam AM, Britto DT, Kronzucker HJ (2018) Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. J Exp Bot 69:1679–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431. https://doi.org/10.1093/aob/mcu217

    Article  CAS  PubMed  Google Scholar 

  • Gandhi MR, Meenakshi S (2012) Preparation and characterization of silica gel/chitosan composite for the removal of Cu (II) and Pb (II). Int J Biol Macromol 50(3):650–657

    Article  PubMed  Google Scholar 

  • Guével MH, Menzies JG, Bélanger EE (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119:429–436

    Article  Google Scholar 

  • Gul S, Safdar M (2009) Proximate composition and mineral analysis of cinnamon. Pak J Nutr 8(9):1456–1460

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Iriti M, Faoro F (2008) Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiol Biochem 46(12):1106–1111. https://doi.org/10.1016/j.plaphy.2008.08.002

    Article  PubMed  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Plant stress toler. 639. In: Sunkar R (ed) Methods in molecular biology (methods and protocols). Humana Press, Totowa, pp 291–297. https://doi.org/10.1007/978-1-60761-702-0_18

    Chapter  Google Scholar 

  • Jayawardana HARK, Weerahewa HLD, Saparamadu MDJS (2014) Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Trop Agric Res 26:74–81

    Article  Google Scholar 

  • Jiao Z, Li Y, Li J, Xu X, Li H, Lu D, Wang J (2012) Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Res 55:293–301. https://doi.org/10.1007/s11540-012-9223-8

    Article  CAS  Google Scholar 

  • Jones JJB, Case VW (1990) Sampling, handling, and analysing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Sci Soc Am, Madison

    Google Scholar 

  • Keisham M, Mukherjee S, Bhatla SC (2018) Mechanisms of sodium transport in plants—progresses and challenges. Int J Mol Sci 19(3):647. https://doi.org/10.3390/ijms19030647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan WUD, Aziz T, Warraich EA, Khalid M (2015) Silicon application improves germination and vegetative growth in maize grown under salt stress. Pak J Agric Sci 52(4):937–944

    Google Scholar 

  • Khan WUD, Aziz T, Maqsood MA, Sabir M, Ahmad HR, Ramzani PMA, Nasim M (2016) Silicon: a beneficial nutrient under salt stress, its uptake mechanism and mode of action. In: Hakeem KR, Akhtar J, Sabir M (eds) Agricultural and environmental prospectives. Springer, Cham, pp 287–301

    Chapter  Google Scholar 

  • Khan WUD, Aziz T, Hussain I, Ramzani PMA, Reichenauer TG (2017) Silicon: A beneficial nutrient for maize crop to enhance photochemical efficiency of photosystem II under salt stress. Arch Agron Soil Sci 63(5):599–611. https://doi.org/10.1080/03650340.2016.1233322

    Article  CAS  Google Scholar 

  • Khan WUD, Aziz T, Maqsood MA, Farooq M, Ramzani PMA, Yasar A, Bilal HM (2018) Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56(4):1047–1058. https://doi.org/10.1007/s11099-018-0812-x

    Article  CAS  Google Scholar 

  • Khan WUD, Tanveer M, Shaukat R, Ali M, Pirdad F (2020) An overview of salinity tolerance mechanisms in plants. In: Hasanuzzaman M, Tanveer M (eds) Salt and drought stress tolerance in plants. Springer, Chams, pp 2–16

    Google Scholar 

  • Kim YH, Khan AL, Waqas M, Lee IJ (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510

    Article  PubMed  PubMed Central  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol 18(2):463–467

    Article  CAS  Google Scholar 

  • Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huang L, Yan Y (2017) Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. J Proteome Res 16(8):3039–3052. https://doi.org/10.1021/acs.jproteome.7b00334

    Article  CAS  PubMed  Google Scholar 

  • Liang WY, Sun ZP, Christie Y (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428. https://doi.org/10.1016/j.envpol.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Hu X, Zhang W, Rogers WJ, Cai W (2005) Hydrogen peroxide mediates defence responses induced by chitosans of differ molecular weights in rice. J Plant Physiol 162:937–944

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161(2–3):1466–1472

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan, 1st edn. Elsevier Sci, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2015) Silicon uptake and accumulation in higher plants. Trends Plant Sci 20:435–442

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense, and methylglyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255. https://doi.org/10.1016/j.ecoenv.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–280. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  • Pongprayoon W, Roytrakul S, Pichayangkura R, Chadchawan S (2013) The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regul 70(2):159–173. https://doi.org/10.1007/s10725-013-9789-4

    Article  CAS  Google Scholar 

  • Pontoni L, Fabbricino M (2012) Use of chitosan and chitosan-derivatives to remove arsenic from aqueous solutions-a mini review. Carbohyd Res 356:86–92. https://doi.org/10.1016/j.carres.2012.03.042

    Article  CAS  Google Scholar 

  • Pottosin I, Dobrovinskaya O (2014) Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J Plant Physiol 171(9):732–742

    Article  CAS  PubMed  Google Scholar 

  • Rios JJ, Martínez-Ballesta MC, Ruiz JM, Blasco B, Carvajal M (2017) Silicon-mediated improvement in plant salinity tolerance: the role of aquaporins. Front Plant Sci 8:948

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Rehman MZ, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431

    Article  CAS  Google Scholar 

  • Rodrigues FA, Duarte HSS, Domiciano GP, Souza CA, Korndörfer GH, Zambolim L (2009) Foliar application of potassium silicate reduces the intensity of soybean rust. Australas Plant Pathol 38:366–372

    Article  CAS  Google Scholar 

  • Rodrigues FA, Duarte HSS, Rezende DC, Wordell Filho JA, Korndörfer GH, Zambolim L (2010) Foliar spray of potassium silicate on the control of angular leaf spot on beans. J Plant Nutr 33:2082–2093

    Article  CAS  Google Scholar 

  • Roth EF, Gilbert HS (1984) The pyrogallol assay for superoxide dismutase: absence of a glutathione artifact. Anal Biochem 137(1):50–53

    Article  CAS  PubMed  Google Scholar 

  • Santa-María GE, Rubio F (2018) Sodium fluxes and silicon at the root plasma membrane: a paradigm shift? J Exp Bot 69(7):1433–1436

    Article  PubMed  PubMed Central  Google Scholar 

  • Sattar A, Cheema MA, Ali H, Sher A, Ijaz M, Hussain M, Hassan W, Abbas T (2016) Silicon mediates the changes in water relations, photosynthetic pigments, enzymatic antioxidants activity and nutrient uptake in maize seedling under salt stress. Grassl Sci 62(4):262–269. https://doi.org/10.1111/grs.12132

    Article  CAS  Google Scholar 

  • Sattar A, Cheema MA, Sher A, Ijaz M, Wasaya A, Yasir TA, Abbas T, Hussain M (2020) Foliar applied silicon improves water relations, stay green and enzymatic antioxidants activity in late sown wheat. SILICON 12(1):223–230. https://doi.org/10.1007/s12633-019-00115-7

    Article  CAS  Google Scholar 

  • Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochem 66(13):1551–1559

    Article  CAS  Google Scholar 

  • Shi Y, Wang Y, Flowers TJ, Gong H (2013) Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. J Plant Physiol 170(9):847–853. https://doi.org/10.1016/j.jplph.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  • Soleimannejad Z, Abdolzadeh A, Sadeghipour HR (2019) Beneficial effects of silicon application in alleviating salinity stress in halophytic Puccinelli adistans plants. SILICON 11(2):1001–1010

    Article  CAS  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics. A bio-metrical approach, 3rd edn. McGraw Hill Book Co Inc, New York, pp 172–177

    Google Scholar 

  • Sullivan GT (1935) Estimation of starch. Ind Eng Chem Anal Ed 7(5):311–314. https://doi.org/10.1021/ac50097a010

    Article  CAS  Google Scholar 

  • Tahir MA, Rahmatullah T, Aziz M, Ashraf S, Kanwal S, Maqsood MA (2006) Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pak J Bot 38(5):1715–1722

    Google Scholar 

  • Tripathi N, Choppala G, Singh RS, Srivastava P, Seshadri B (2016) Sorption kinetics of zinc and nickel on modified chitosan. Environ Moni Assess 188(9):507

    Article  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76(1):115–127. https://doi.org/10.1111/tpj.12277

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Yaghubi K, Ghaderia N, Vafaeea Y, Javadia T (2016) Potassium silicate alleviates deleterious effects of salinity on two strawberry cultivars grown under soilless pot culture. Sci Hortic 213:87–95

    Article  CAS  Google Scholar 

  • Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20(5):1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.). Int J Agric Res 12:130–135

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167(3):527–533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Higher Education Commission (HEC) of Pakistan for financing this research under Startup Research Grant Program, Project# 993.

Author information

Authors and Affiliations

Authors

Contributions

W-U-DK conceived the idea and designed the research. W-U-DK, FS and ZS conducted the experiment and analyzed the data. W-U-DK, MAN, MI and MAF developed the full draft and analyzed the data. W-U-DK, MAN, MAF and ZS revised and critically reviewed the manuscript. All authors contributed to the subsequent development and approved the final manuscript. At the end, all authors again reviewed the manuscript carefully.

Corresponding author

Correspondence to Waqas-ud-Din Khan.

Ethics declarations

Conflict of interest

There was no conflict of interest found between authors.

Additional information

Handling Editor: Durgesh Kumar Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, WuD., Sharif, F., Naeem, M.A. et al. Chitosan Polymerized Silica Composite as a Potential Silicon Source: Modulation on Antioxidant Enzymes, Ionic Homeostasis, and Grain Quality in Maize Plants Under Na+ Stress. J Plant Growth Regul 42, 2374–2388 (2023). https://doi.org/10.1007/s00344-022-10711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10711-4

Keywords

Navigation