Skip to main content
Log in

Hydrogen Peroxide Induced Antioxidant-Coupled Redox Regulation of Germination in Rice: Redox Metabolic, Transcriptomic and Proteomic Evidences

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present study explored the impact of H2O2—induced redox manipulation on the oxidative windows of the germinating seeds of two contrasting indica rice cultivars (Oryza sativa L., Cultivars SR26B and Ratna) in calibrating germination and seedling establishment. The salt-resistant cultivar SR26B exhibited significantly improved antioxidant-conjugated redox buffering as compared to the salt sensitive rice Ratna under both elevated and lower doses of H2O2 (20 mM & 500 µM H2O2) by augmenting the Halliwell-Asada pathway and downregulating the oxidative damages to the juvenile tissue (assessed in terms of sensitive redox biomarkers like total ROS, H2O2, O2.−,free carbonyl, membrane protein thiol, total thiol content, and lipid peroxidation, radical scavenging properties). Further, low magnitude inductive pulse of H2O2 treatment (500 µM H2O2), particularly for the salt-tolerant cultivar SR26B assist significantly in maintaining redox homeostasis by augmenting both the expression of genes of H2O2 processing enzymes (SodCc2,CatA, OsAPx2, GRase) and their activities, suggesting the central role of antioxidant-coupled redox buffering and maintenance of ROS homeostasis during germination for the salinity-resistant cultivar SR26B. Comparative proteomic approach involving 2D-MALDI TOF MS/MS revealed several deferentially expressed proteins under low titre H2O2 treatment in both the rice cultivars. Some significant deferentially expressed proteins identified by mass spectrometry, matched diverse protein species which are primarily involved in redox homeostasis, cell defence, photosynthesis and energy metabolism, etc. Overall, the result indicates a good correlation between H2O2 manipulated internal redox cues, oxidative changes and oxidative stress responsive proteins in two rice cultivars necessary for germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Material collected from Central Rice Research Institute, Cuttack, Orrisa, India. Data generated from the of experimentation of the outcome communicating laboratory.

Code Availability

Not applicable.

References

  • Ahmad P, Latif AAHA, Rasool S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336–1347

    PubMed  PubMed Central  Google Scholar 

  • Anjum BA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Ara N, Nakkanong K, Wenhui LV, Yang J, Hu Z, Zhang MS (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (Cucurbita maxima and Cucurbita moschata) and their interspecific inbreed line Maxchata. Int J Mol Sci 14:24008–24028

    PubMed  PubMed Central  Google Scholar 

  • Ashraf MA, Rasheed R, Hussain I, Iqbal M, Haider MZ, Parveen S, Sajid MA (2014) Hydrogen peroxide modulates antioxidant system and nutrient relation in maize (Zea mays L.) under water-deficit conditions. Arch Agron Soil Sci 61:507–523

    Google Scholar 

  • Baisak R, Rana D, Acharya PBB, Kar M (1994) Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol 35:489–495

    CAS  Google Scholar 

  • Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA (2011) Understanding the role of H2O2 during pea seed germination: a combined proteomic and hormone profiling approach. Plant Cell Environ 34:1907–1919

    PubMed  Google Scholar 

  • Bartoli CG, Simontacchi M, Tambussi E, Beltrano J, Montaldi E, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect on antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383

    CAS  Google Scholar 

  • Basu A, Du M, Leyva MJ, Sanchez K, Betts NM, Wu M, Aston CE, Lyons TJ (2010) Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J Nutr 140:1582–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HMW, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Google Scholar 

  • Bhattacharjee S (2008) Calcium-dependent signaling pathway in heat-induced oxidative injury in Amaranthus lividus. Biol Plant 52:1137–1140

    Google Scholar 

  • Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J Bot. https://doi.org/10.1155/2012/985298

    Article  Google Scholar 

  • Bhattacharjee S (2019) ROS and oxidative stress: origin and implication. In: Bhattacharjee S (ed) Reactive oxygen species in plant biology. Springer, Berlin, pp 1–31

    Google Scholar 

  • Bhattacharjee S, Dey N (2018) Redox metabolic and molecular parameters for screening drought tolerant indigenous aromatic rice cultivars. Physiol Mol Biol Plants 24:7–23

    CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus induced gene silencing in Arabidopsis. Plant Physiol 142:21–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11(5):865–882

    CAS  PubMed  Google Scholar 

  • Chaitanya KSK, Naithani SC (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability of Shorea robusta Gaertn F. New Phytol 126:623–627

    CAS  Google Scholar 

  • Chakrabarty A, Banik N, Bhattacharjee S (2019) Redox regulation of germination during imbibitional oxidative and chilling stress in an indica rice cultivar (Oryza sativa L., Cultivar Ratna). Physiol Mol Biol Plants 25:649–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Bhattacharjee S (2015) Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176:65–77

    CAS  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu JA (2005) Proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    CAS  PubMed  Google Scholar 

  • Czabator FJ (1962) Germination value: an index combining speed and completeness of pine seed germination. For Sci 8:386–395

    Google Scholar 

  • Das A, Eldakak M, Paudel B, Kim DW, Hemati H, Bash C, Rohila JS (2016) Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in Soybean. Biomed Res Int 16:01–23

    Google Scholar 

  • Dekok LJ, Kuiper PJC (1986) Effect of short term incubation with sulfate, chloride and selenate on glutathione content of spinach leaf disc. Physiol Plant 68:472–482

    Google Scholar 

  • Dey N, Bhattacharjee S (2020) Accumulation of polyphenolic compounds and osmolytes under dehydration stress and their implication in redox regulation in four indigenous aromatic rice cultivars. Rice Sci 27:329–344

    Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:72–77

    Google Scholar 

  • Fick NG, Qualset CD (1975) Genetic control of plant amylase activity. Proc Natl Acad Sci USA 72:852–862

    Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2096

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lopez-Delago H, Dat JF, Scott JM (1997) Hydrogen peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254

    CAS  Google Scholar 

  • Giannopolities CN, Ries SK (1977) Superoxide dismutase I Occurrence in higher plants. Plant Physiol 59:309–319

    Google Scholar 

  • Gong M, Li YJ, Chen SZ (1998) ABA induced thermotolerance in maize seedlings is mediated by calcium and associated antioxidant systems. J Plant Physiol 153:488–497

    CAS  Google Scholar 

  • Han C, Yin X, He D, Yang P (2013) Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS ONE. https://doi.org/10.1371/journal.pone.0056947

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, Gao Z, Li R (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat seedlings. Afr J Biotechnol 8:6151–6157

    CAS  Google Scholar 

  • He D, Han C, Yao J, Shen S, Yan P (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photo-oxidation in isolated chloroplasts: kinetics and stoichiometry of fatty acid oxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hodges-Charles D, Forney F, Wisme WV (2001) Antioxidant responses in harvested leaves of two cultivars of spinach differing in senescence rates. J Soc Hortic Sci 126:611–617

    Google Scholar 

  • Hossain MA, Fujita M (2013) Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.). Plant Gene Trait 4:109–123

    Google Scholar 

  • Hossain MA, Mostafa MG, Fujita M (2013) Heat shock positively modulates oxidative protection of salt and drought stressed mustard (Brassica campestries L.) seedlings. J Plant Sci Mol Breeding. https://doi.org/10.7243/2050-2389-2-2

    Article  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt D, Fujit M, Tran LSP (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

    PubMed  PubMed Central  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, Aoki N, Zheng S-H, Yuasa T, Iwaya-Inoue M (2012) Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiol 158:1705–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of ABA on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    CAS  PubMed  Google Scholar 

  • Kim HT, Choi UK, Ryu HS, Lee SJ, Kwon OS (2011) Mobilization of storage proteins in soybean seed (Glycine max L.) during germination and seedling growth. Biochem Biophys Acta 1814:1178–1187

    CAS  PubMed  Google Scholar 

  • Kosova K, Vitamvas P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00122

    Article  PubMed  PubMed Central  Google Scholar 

  • Lariguet P, Ranocha P, De Meyer M, Barbier O, Penel C, Dunand C (2013) Identification of a hydrogen peroxide signaling pathway in the control of light-dependent germination in Arabidopsis. Planta 238:381–395

    CAS  PubMed  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Int Plant Biol 52:315–323

    CAS  Google Scholar 

  • MacNevin WM, Uron PF (1953) Spectrum of hydrogen peroxide from organic hydroperoxides. Anal Chem 25:1760–1761

    CAS  Google Scholar 

  • Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43:335–367

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Moradi F, Ismail AAM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Noctor G, Arisi ACM, Jouanin L, Kunert KJ, Rennenberg H, Foyer C (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Novarri-Izzo F, Pinzino C, Quartacci MF, Sgherri CLM (1994) Intracellular membranes: kinetics of superoxide production and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc R Soc B 4(102B):187–191

    Google Scholar 

  • Parker R, Flower TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57:1109–1118

    CAS  PubMed  Google Scholar 

  • Pawlowski TA (2007) Proteomics of European beech (Fagussylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Proteomics 7:2246–2257

    CAS  PubMed  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  • Re R, Pellegrinni N, Proteggente A, Pannal A, Yan M, Rice-Evans C (1999) Antioxidant activities applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    CAS  PubMed  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize: quantitative variations and identification. Plant Physiol 117:1253–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy B, Vaughn JN, Kim BH, Zhou F, Gilchrist M, Arnim AGV (2010) The h subunit of elF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA 16:748–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roychoudhury A, Basu S, Sarka SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic Indica rice cultivar. Plant Cell Rep 27:1395–1410

    CAS  PubMed  Google Scholar 

  • Rubio-Casal AE, Castillo JM, Lucue C, Figueroa ME (2003) Influence of salinity on germination and seed viability of two primary colonizers of Mediterranean salt plants. J Arid Environ 53:145–152

    Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Jing Y, Kuang T (2003) Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3:527–535

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protocols 1:2856–2860

    Google Scholar 

  • Shyu YS, Hwang LS (2002) Antioxidative activity of the crude extract of lignan glycosides from unroasted Burma black sesame meal. Food Res Int 35:357–365

    CAS  Google Scholar 

  • Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects α-tocopherol content in soyabean embryonic axes upon imbibitions. Plant Physiol 103:943–953

    Google Scholar 

  • Singh VP (1997) Interaction of temperature and microsomal peroxidase in aflatoxin degradation by Aspergillus flavus 102566. Curr Sci 72:529–532

    Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    CAS  PubMed  Google Scholar 

  • Snell FD, Snell CT (1971) Colorimetric methods of analysis. Van Nostard Reinford Co., New york

    Google Scholar 

  • Song Y, Manson JE, Buring JE, Sesso HD, Liu S (2005) Association of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24:376–384

    CAS  PubMed  Google Scholar 

  • Sullivan CY (1972) Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. In: Rao NGP, House LR (eds) Sorghum in the seventies. Oxford and IBH publishing Co., New Delhi

    Google Scholar 

  • Taylor NL, Heazlewood JL, Day A, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    CAS  PubMed  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Weng L, Feetham MC, Doyle MJ, Yi EC, Dai H, Thorsson V, Eng J, Goodlett D, Berger JP, Gunter B, Linseley PS, Stoughton RB, Aebersold R, Collins SJ, Hanlon WA, Hood LE (2004) Integrated genomic and proteomic analyses of gene expression in Mammalian cells. Mol Cell Proteomics 3:960–969

    CAS  PubMed  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    CAS  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turan S, Tripathy BC (2012) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    PubMed  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Breusegem FV (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Parveen M, Gelan S, Basr SMA (2007) Pretreatment of seeds with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294

    CAS  PubMed  Google Scholar 

  • Wan XY, Liu JY (2008) Comapartive proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 7:1469–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhan J, Li JL, Ma XR (2014) Exogenous hydrogen peroxide enhanced the thermotolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36:2915–2924

    CAS  Google Scholar 

  • Wang Z, Xing S, Birkenbihl R, Zachgo S (2009) Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response. Mol Plant 2:323–335

    CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    CAS  PubMed  Google Scholar 

  • Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M (2016) Different modes of hydrogen peroxide action during seed germination. Front Plant Sci 7:66

    PubMed  PubMed Central  Google Scholar 

  • Xu Z, Mahmood K, Rothstein SJ (2017) ROS induces anthocyanin production Via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS-generating stresses in Arabidopsis. Plant Cell Physiol 58:1364–1377

    CAS  PubMed  Google Scholar 

  • Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    CAS  PubMed  Google Scholar 

  • Yang L, Mih N, Anand A, Park JH, Tan J, Yurkovich JT, Monk JM, Lloyd CJ, Sandberg TE, Seo SW, Kim D, Sastry AV, Phaneuf P, Gao Y, Broddrick JT, Chen K, Heckmann D, Szubin R, Hefner Y, Feist AM, Palsson BO (2019) Cellular responses to reactive oxygen species are predicted from molecular mechanisms. Proc Nat Aca Sci USA 116:14368–14373. https://doi.org/10.1073/pnas.1905039116

    Article  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isozymes in response to oxidative stresses. Plant Physiol 123:223–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Deng Y, Dai L, Zhou Y, Zhang X, Cao M (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Liu CH (2003) Hydrogen peroxide induced chilling tolerance in mung bean mediated through ABA-induced glutathione accumulation. Funct Plant Biol 30:958–963

    Google Scholar 

  • Zhang J, Kirkham MB (1996) Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol 132:361–373

    CAS  PubMed  Google Scholar 

  • Zhang D, Chen L, Li D, Lv B, Chen Y, Chen J, Yan X, Liang J (2014) OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS ONE 9(5):e97120

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

UKR acknowledges Indian Council for Cultural Relations (ICCR) Scholarships, Government of India for Over sea research fellowships. AC & GK acknowledges UGC, New Delhi, India for their Research Fellowships.

Funding

The work is supported by University Grants Commission, India [GrantNo.F.5–13/012 (SAP-II)] and DST-FIST [Grant no. SR/FST/LS-1/2018/188©].

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design was done by Soumen Bhattacharjee. Material preparation, data collection and analysis were performed by Ananya Chakrabarty, Soumen Bhattacharjee, Durga Kora, Uthpal Krishna Roy. The first draft of the manuscript was written by Soumen Bhattacharjee and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Soumen Bhattacharjee.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors.

Additional information

Handling Editor: Pramod kumar nagar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Chakrabarty, A., Kora, D. et al. Hydrogen Peroxide Induced Antioxidant-Coupled Redox Regulation of Germination in Rice: Redox Metabolic, Transcriptomic and Proteomic Evidences. J Plant Growth Regul 42, 1084–1106 (2023). https://doi.org/10.1007/s00344-022-10615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-022-10615-3

Keywords

Navigation