Skip to main content

Application of NPA Restrained Leaf Expansion by Reduced Cell Division in Soybean Under Shade Stress

Abstract

Auxin is the major hormone involved in the shade-avoidance response in plants. Auxin-induced elongation of the stem is accompanied by the restraint of leaf blade expansion. The auxin transportation inhibitor, 1-N-naphthylphthalamic acid (NPA), is widely used in auxin functional studies, while the effects of NPA on soybean leaf expansion under shade conditions is still not known. This study assessed the effect of NPA on hormone content and cell dynamics variations during leaf expansion of soybeans under shade conditions. The results revealed that the inhibition of soybean leaf area under shade conditions was caused by a reduction in the cell number at the early stages of leaf expansion. The application of NPA under shade conditions inhibited leaf expansion by reducing the cell number. Auxin levels showed an increasing trend during the leaf expansion under shade, while cytokinin was significantly reduced. The application of NPA also reduced cytokinin levels. Cell flow cytometry revealed that reduction of the cell mitotic index by shade and NPA were caused by decreasing cell division at the early stages of leaf expansion. The shade-tolerant variety had a relative larger leaf area than the shade-sensitive variety due to higher cell division. In conclusion, the application of NPA caused a cytokinin reduction at the early stages of leaf expansion, leading to a lower cell division and cell number and inhibiting the leaf area in soybeans under shade. Future works of the function of cytokinin on cell division for selecting a higher leaf area may increase shade tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Achard P, Gusti A, Cheminant S et al (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19:1188–1193. https://doi.org/10.1016/j.cub.2009.05.059

    CAS  Article  PubMed  Google Scholar 

  2. Amijima M, Iwata Y, Koizumi N, Mishiba K (2014) The polar auxin transport inhibitor TIBA inhibits endoreduplication in dark grown spinach hypocotyls. Plant Sci 225:45–51. https://doi.org/10.1016/j.plantsci.2014.05.007

    CAS  Article  PubMed  Google Scholar 

  3. Anastasiou E, Kenz S, Gerstung M et al (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856. https://doi.org/10.1016/j.devcel.2007.10.001

    CAS  Article  PubMed  Google Scholar 

  4. Armengot L, Marquès-Bueno MM, Jaillais Y (2016) Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot 67:4015–4037. https://doi.org/10.1093/jxb/erw216

    CAS  Article  PubMed  Google Scholar 

  5. Autran D, Jonak C, Belcram K et al (2002) Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J 21:6036–6049. https://doi.org/10.1093/emboj/cdf614

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Ballaré CL, Sánchez RA, Scopel AL et al (1987) Early detection of neighbour plants by phytoehrome perception of spectral changes in reflected sunlight. Plant Cell Environ 10:551–557. https://doi.org/10.1111/1365-3040.ep11604091

    Article  Google Scholar 

  7. Carabelli M, Possenti M, Sessa G et al (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868. https://doi.org/10.1101/gad.432607

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Cheriere T, Lorin M, Corre-Hellou G (2020) Species choice and spatial arrangement in soybean-based intercropping: levers that drive yield and weed control. Field Crops Res 256:107923. https://doi.org/10.1016/j.fcr.2020.107923

    Article  Google Scholar 

  9. Cho H-T, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788. https://doi.org/10.1073/pnas.160276997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Cnops G, Jover-Gil S, Peters JL et al (2004) The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. J Exp Bot 55:1529–1539. https://doi.org/10.1093/jxb/erh165

    CAS  Article  PubMed  Google Scholar 

  11. Cookson SJ, Granier C (2006) A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana Rosette leaf development reveals new components of the shade-adaptative response. Ann Bot 97:443–452. https://doi.org/10.1093/aob/mcj047

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cookson SJ, Van Lijsebettens M, Granier C (2005) Correlation between leaf growth variables suggest intrinsic and early controls of leaf size in Arabidopsis thaliana. Plant Cell Environ 28:1355–1366. https://doi.org/10.1111/j.1365-3040.2005.01368.x

    Article  Google Scholar 

  13. de Wit M, Lorrain S, Fankhauser C (2014) Auxin-mediated plant architectural changes in response to shade and high temperature. Physiol Plant 151:13–24. https://doi.org/10.1111/ppl.12099

    CAS  Article  PubMed  Google Scholar 

  14. de Wit M, Ljung K, Fankhauser C (2015) Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. New Phytol 208:198–209. https://doi.org/10.1111/nph.13449

    CAS  Article  PubMed  Google Scholar 

  15. Deprost D, Yao L, Sormani R et al (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870. https://doi.org/10.1038/sj.embor.7401043

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Dewitte W, Rioukhamlichi C, Scofield S et al (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15:79–92. https://doi.org/10.1105/tpc.004838

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Disch S, Anastasiou E, Sharma VK et al (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279. https://doi.org/10.1016/j.cub.2005.12.026

    CAS  Article  PubMed  Google Scholar 

  18. Francis CA (1989) Biological efficiencies in multiple-cropping systems. Adv Agron 42:1–42. https://doi.org/10.1016/S0065-2113(08)60522-2

    Article  Google Scholar 

  19. Franklin KA (2008) Shade avoidance. New Phytol 179:930–944. https://doi.org/10.1111/j.1469-8137.2008.02507.x

    CAS  Article  PubMed  Google Scholar 

  20. Fraser DP, Hayes S, Franklin KA (2016) Photoreceptor crosstalk in shade avoidance. Curr Opin Plant Biol 33:1–7. https://doi.org/10.1016/j.pbi.2016.03.008

    CAS  Article  PubMed  Google Scholar 

  21. Gommers CMM, Visser EJW, Onge KRS et al (2013) Shade tolerance: when growing tall is not an option. Trends Plant Sci 18:65–71. https://doi.org/10.1016/j.tplants.2012.09.008

    CAS  Article  PubMed  Google Scholar 

  22. Gong W, Qi P, Du J et al (2014) Transcriptome analysis of shade-induced inhibition on leaf size in relay intercropped soybean. PLoS ONE 9:e98465. https://doi.org/10.1371/journal.pone.0098465

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Gong WZ, Jiang CD, Wu YS et al (2015) Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica 53:259–268. https://doi.org/10.1007/s11099-015-0103-8

    Article  Google Scholar 

  24. González N, Inzé D (2015) Molecular systems governing leaf growth: from genes to networks. J Exp Bot 66:1045–1054. https://doi.org/10.1093/jxb/eru541

    CAS  Article  PubMed  Google Scholar 

  25. Gonzalez N, De Bodt S, Sulpice R et al (2010) Increased leaf size: different means to an end. Plant Physiol 153:1261–1279. https://doi.org/10.1104/pp.110.156018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Gonzalez N, Vanhaeren H, Inzé D (2012) Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 17:332–340. https://doi.org/10.1016/j.tplants.2012.02.003

    CAS  Article  PubMed  Google Scholar 

  27. Granier C, Turc O, Tardieu F (2000) Co-ordination of cell division and tissue expansion in sunflower, tobacco, and pea leaves: dependence or independence of both processes? J Plant Growth Regul 19:45–54. https://doi.org/10.1007/s003440000006

    CAS  Article  PubMed  Google Scholar 

  28. Hertel R, Lomax TL, Briggs WR (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157:193–201. https://doi.org/10.1007/BF00405182

    CAS  Article  PubMed  Google Scholar 

  29. Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119:37–42. https://doi.org/10.1007/s10265-005-0232-4

    Article  PubMed  Google Scholar 

  30. Hu Y, Xie Q, Chua N-H (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961. https://doi.org/10.1105/tpc.013557

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Hu R, Fan C, Li H et al (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93. https://doi.org/10.1186/1471-2199-10-93

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ (2018) Multiple links between shade avoidance and auxin networks. J Exp Bot 69:213–228. https://doi.org/10.1093/jxb/erx295

    CAS  Article  PubMed  Google Scholar 

  33. Keller CP, Stahlberg R, Barkawi LS, Cohen JD (2004) Long-term inhibition by auxin of leaf blade expansion in bean and Arabidopsis. Plant Physiol 134:1217–1226. https://doi.org/10.1104/pp.103.032300

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Keuskamp D, Pierik R (2013) Plant competition: light signals control polar auxin transport. In: Chen R, Baluška F (eds) Polar auxin transport. Springer, Berlin, pp 281–293

    Chapter  Google Scholar 

  35. Keuskamp DH, Sasidharan R, Vos I et al (2011) Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208–217. https://doi.org/10.1111/j.1365-313X.2011.04597.x

    Article  PubMed  Google Scholar 

  36. Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104. https://doi.org/10.1046/j.1365-313X.2003.01862.x

    CAS  Article  PubMed  Google Scholar 

  37. Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves. Photochem Photobiol Sci 4:770–774. https://doi.org/10.1039/B418440H

    CAS  Article  PubMed  Google Scholar 

  38. Kohnen MV, Schmid-Siegert E, Trevisan M et al (2016) Neighbor detection induces organ-specific transcriptomes, revealing patterns underlying hypocotyl-specific growth. Plant Cell 28:2889. https://doi.org/10.1105/tpc.16.00463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23:783–793. https://doi.org/10.1016/j.tplants.2018.05.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Kozuka T, Kobayashi J, Horiguchi G et al (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618. https://doi.org/10.1104/pp.110.156802

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Li J, Yang H, Peer WA et al (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125. https://doi.org/10.1126/science.1115711

    CAS  Article  PubMed  Google Scholar 

  42. Li Y, Zheng L, Corke F et al (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 22:1331–1336. https://doi.org/10.1101/gad.463608

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Li L, Ljung K, Breton G et al (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790. https://doi.org/10.1101/gad.187849.112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474. https://doi.org/10.1046/j.1365-313X.2001.01173.x

    CAS  Article  PubMed  Google Scholar 

  46. Malézieux E, Crozat Y, Dupraz C et al (2009) Mixing plant species in cropping systems: concepts, tools and models: a review. In: Lichtfouse E, Navarrete M, Debaeke P et al (eds) Sustainable agriculture. Springer Netherlands, Dordrecht, pp 329–353

    Chapter  Google Scholar 

  47. Masuda HP, Cabral LM, De Veylder L et al (2008) ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription. EMBO J 27:2746–2756. https://doi.org/10.1038/emboj.2008.191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Müller-Moulé P, Nozue K, Pytlak ML et al (2016) YUCCA auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ 4:e2574. https://doi.org/10.7717/peerj.2574

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Oguchi R, Hikosaka K, Hiura T, Hirose T (2006) Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 149:571–582. https://doi.org/10.1007/s00442-006-0485-1

    CAS  Article  PubMed  Google Scholar 

  50. Pierik R, de Wit M (2014) Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J Exp Bot 65:2815–2824. https://doi.org/10.1093/jxb/ert389

    Article  PubMed  Google Scholar 

  51. Pons TL, Jordi W, Kuiper D (2001) Acclimation of plants to light gradients in leaf canopies: evidence for a possible role for cytokinins transported in the transpiration stream. J Exp Bot 52:1563–1574. https://doi.org/10.1093/jexbot/52.360.1563

    CAS  Article  PubMed  Google Scholar 

  52. Qi J, Wang Y, Yu T et al (2014) Auxin depletion from leaf primordia contributes to organ patterning. Proc Natl Acad Sci USA 111:18769–18774. https://doi.org/10.1073/pnas.1421878112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  54. Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JAH (1999) Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283:1541–1544. https://doi.org/10.1126/science.283.5407.1541

    CAS  Article  PubMed  Google Scholar 

  55. Schaller GE, Street IH, Kieber JJ (2014) Cytokinin and the cell cycle. Curr Opin Plant Biol 21:7–15. https://doi.org/10.1016/j.pbi.2014.05.015

    CAS  Article  PubMed  Google Scholar 

  56. Schaller GE, Bishopp A, Kieber JJ (2015) The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63. https://doi.org/10.1105/tpc.114.133595

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Shultz RW, Lee T-J, Allen GC et al (2009) Dynamic localization of the DNA replication proteins MCM5 and MCM7 in plants. Plant Physiol 150:12. https://doi.org/10.1104/pp.109.136614

    CAS  Article  Google Scholar 

  58. Spartz AK, Lee SH, Wenger JP et al (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990. https://doi.org/10.1111/j.1365-313X.2012.04946.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903. https://doi.org/10.1093/jxb/erq147

    CAS  Article  PubMed  Google Scholar 

  60. Tan S (2021) Action mode of NPA: direct inhibition on PIN auxin transporters. Mol Plant 14:199. https://doi.org/10.1016/j.molp.2021.01.010

    CAS  Article  Google Scholar 

  61. Tao Y, Ferrer J-L, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176. https://doi.org/10.1016/j.cell.2008.01.049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Teale W, Palme K (2018) Naphthylphthalamic acid and the mechanism of polar auxin transport. J Exp Bot 69:303–312. https://doi.org/10.1093/jxb/erx323

    CAS  Article  PubMed  Google Scholar 

  63. Terashima I, Miyazawa S-I, Hanba YT (2001) Why are sun leaves thicker than shade leaves?—consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105. https://doi.org/10.1007/pl00013972

    CAS  Article  Google Scholar 

  64. Tsukaya H (2019) Has the impact of endoreduplication on cell size been overestimated? New Phytol 223:11–15. https://doi.org/10.1111/nph.15781

    Article  PubMed  Google Scholar 

  65. Tsukaya H, Kozuka T, Kim G-T (2002) Genetic control of petiole length in Arabidopsis thaliana. Plant Cell Physiol 43:1221–1228. https://doi.org/10.1093/pcp/pcf147

    CAS  Article  PubMed  Google Scholar 

  66. Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506

    Article  Google Scholar 

  67. Vandenbussche F, Pierik R, Millenaar FF et al (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468. https://doi.org/10.1016/j.pbi.2005.07.007

    CAS  Article  PubMed  Google Scholar 

  68. Wang X, Feng Y, Yu L et al (2020) Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Sci Total Environ 719:137517. https://doi.org/10.1016/j.scitotenv.2020.137517

    CAS  Article  PubMed  Google Scholar 

  69. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492. https://doi.org/10.1073/pnas.171304098

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Won C, Shen X, Mashiguchi K et al (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523. https://doi.org/10.1073/pnas.1108436108

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wu Y, Gong W, Yang W (2017) Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci Rep 7:9259. https://doi.org/10.1038/s41598-017-10026-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Wu Y, Wang E, He D et al (2019) Combine observational data and modelling to quantify cultivar differences of soybean. Eur J Agron 111:125940. https://doi.org/10.1016/j.eja.2019.125940

    Article  Google Scholar 

  73. Xu Z, Li C, Zhang C et al (2020) Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use; A meta-analysis. Field Crops Res 246:107661. https://doi.org/10.1016/j.fcr.2019.107661

    Article  Google Scholar 

  74. Yang F, Huang S, Gao R et al (2014) Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Res 155:245–253. https://doi.org/10.1016/j.fcr.2013.08.011

    Article  Google Scholar 

  75. Yang F, Fan Y, Wu X et al (2018a) Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00056

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang F, Feng L, Liu Q et al (2018b) Effect of interactions between light intensity and red-to-far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ Exp Bot 150:79–87. https://doi.org/10.1016/j.envexpbot.2018.03.008

    CAS  Article  Google Scholar 

  77. Zhang L, van der Werf W, Bastiaans L et al (2008) Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res 107:29–42. https://doi.org/10.1016/j.fcr.2007.12.014

    Article  Google Scholar 

  78. Zhao Y, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309. https://doi.org/10.1126/science.291.5502.306

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31701371). We are grateful to Dr. Shaohong FU and Prof. Jin YANG from Chengdu Academy of Agricultural and Forestry Sciences for their technical help on cell flow cytometry and fundamental support.

Author information

Affiliations

Authors

Contributions

WZG conducted the experiment, wrote the manuscript, and is the corresponding author; JCL and CZD conducted the experiment; YW analyzed experimental data; XCZ gave technical support for this study; JJZ led the research team and is the other corresponding author.

Corresponding authors

Correspondence to Wanzhuo Gong or Jijun Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: James Campanella.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 6644 KB)

Supplementary file2 (XLSX 12 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Long, J., Wu, Y. et al. Application of NPA Restrained Leaf Expansion by Reduced Cell Division in Soybean Under Shade Stress. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10517-w

Download citation

Keywords

  • Shade
  • NPA
  • Soybean
  • Leaf expansion
  • Cell division
  • Cytokinin