Skip to main content

Trichoderma Synthesizes Cytokinins and Alters Cytokinin Dynamics of Inoculated Arabidopsis Seedlings

Abstract

Trichoderma is an important genus of symbiotic fungi, commonly used around the world as biocontrol agents and as biofertilizer. Although their beneficial effects are well known and are successfully exploited in sustainable agriculture practices, the biochemical mechanisms of plant growth-promoting actions of Trichoderma and their anti-pathogen characteristics are not well understood. This study biochemically surveyed 22 strains of Trichoderma and shows that Trichoderma produces cytokinins (CKs), which has not been reported to date. The phytohormone profiles ranged from 5.34 to 379.99 pmol CKs released to 10 mL of the growth medium and comprised riboside and nucleotide derivatives of cis-zeatin (cZ) and isopentenyladenine (iP), suggesting that fungal CKs originate from a tRNA degradation pathway. We reveal a connection between the levels of free base cZ produced by Trichoderma and the inhibition rate against the pathogen Fusarium graminearum among the tested strains. Furthermore, we analyzed CK profiles of Arabidopsis plants cultured in vitro in the presence of Trichoderma strains. The inoculated plants showed increased levels of cZ-type (cZR, cZROG) and iP-type (iP, iPR) CKs—the forms which dominated CK profiles of all the fungal in vitro cultures tested in this study. The increase in the levels of cZ derivatives was accompanied by a significant reduction in plant trans-zeatin (tZ)-type CKs (tZR, tZNT, tZOG, tZ7G, tZ9G) in Arabidopsis when co-cultured with the fungus. Our work suggests that CKs produced by plant symbiotic Trichoderma strains can be used for plant growth stimulation, may impact the colonization strategy of symbiotic fungi, and include alterations to the host plant phytohormones for enhanced plant resistance against pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abo Nouh FA (2019) Endophytic fungi for sustainable agriculture. Microbiol Biosyst 4:31–44. https://doi.org/10.21608/MB.2019.38886

    Article  Google Scholar 

  2. Akagi A, Fukushima S, Okada K, Jiang CJ, Yoshida R, Nakayama A, Shimono M, Sugano M, Yamane H, Takatsuji H (2014) WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol Biol 86:171–183. https://doi.org/10.1007/s11103-014-0221-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T (2019) Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci 10:1777. https://doi.org/10.3389/fpls.2019.01777

    Article  PubMed  Google Scholar 

  4. Akhter W, Bhuiyan MKA, Sultana F, Hossain MM (2015) Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). CR Biol 338:21–28. https://doi.org/10.1016/j.crvi.2014.10.003

    Article  Google Scholar 

  5. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Allen MF, Moore TS Jr, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374. https://doi.org/10.1139/b80-038

    CAS  Article  Google Scholar 

  7. Aoki MM, Seegobin M, Kisiala A, Noble A, Brunetti C, Emery RJN (2019) Phytohormone metabolism in human cells: cytokinins are taken up and interconverted in HeLa cell culture. FASEB BioAdv 1:320–331. https://doi.org/10.1096/fba.2018-00032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209. https://doi.org/10.1007/s11104-004-5047-x

    CAS  Article  Google Scholar 

  9. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. https://doi.org/10.1007/s11104-007-9233-5

    CAS  Article  Google Scholar 

  10. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745. https://doi.org/10.1126/science.1113373

    CAS  Article  PubMed  Google Scholar 

  11. Atkins CA, Pigeaire A (1993) Application of cytokinins to flowers to increase pod set in Lupinus angustifolius L. Aust J Agric Res 44:1799–1819. https://doi.org/10.1071/AR9931799

    CAS  Article  Google Scholar 

  12. Babosha AV (2009) Regulation of resistance and susceptibility in wheat–powdery mildew pathosystem with exogenous cytokinins. J Plant Physiol 166:1892–1903. https://doi.org/10.1016/j.jplph.2009.05.014

    CAS  Article  PubMed  Google Scholar 

  13. Bompadre MJ, Bidondo LF, Silvani VA, Colombo RP, Pérgola M, Pardo AG, Godeas AM (2015) Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions. Symbiosis 65:55–63. https://doi.org/10.1007/s13199-015-0318-2

    CAS  Article  Google Scholar 

  14. Bozcuk S (1981) Effects of kinetin and salinity on germination of tomato, barley and cotton seeds. Ann Bot 48:81–84. https://doi.org/10.1093/oxfordjournals.aob.a086100

    CAS  Article  Google Scholar 

  15. Chanclud E, Kisiala A, Emery NR, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Path https://doi.org/10.1371/journal.ppat.1005457

    Article  Google Scholar 

  16. Checker VG, Kushwaha HR, Kumari P, Yadav S (2018) Role of phytohormones in plant defense: signaling and cross talk. In: Singh A, Singh I (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore

    Google Scholar 

  17. Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295. https://doi.org/10.1016/j.devcel.2010.07.011

    CAS  Article  PubMed  Google Scholar 

  18. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592. https://doi.org/10.1104/pp.108.130369

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Contreras-Cornejo HA, Macías-Rodríguez L, Vergara AG, López-Bucio J (2015) Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. J Plant Growth Regul 34:425–432. https://doi.org/10.1007/s00344-014-9471-8

    CAS  Article  Google Scholar 

  20. Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:36. https://doi.org/10.1093/femsec/fiw036

    CAS  Article  Google Scholar 

  21. Cosme M, Ramireddy E, Franken P, Schmülling T, Wurst S (2016) Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 26:709–720. https://doi.org/10.1007/s00572-016-0706-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM (2010) Cytokinin primes plant responses to wounding and reduces insect performance. J Plant Growth Regul 29:289–296. https://doi.org/10.1007/s00344-009-9135-2

    CAS  Article  Google Scholar 

  23. Eddleman H (1998) Making bacteria media from potato. Indiana Biolab. https://www.disknet.com. Retrieved 4 Apr 2011.

  24. Eisermann I, Motyka V, Kümmel S, Dobrev PI, Hübner K, Deising HB, Wirsel SG (2020) CgIPT1 is required for synthesis of cis-zeatin cytokinins and contributes to stress tolerance and virulence in Colletotrichum graminicola. Fungal Gen Biol 143:103436. https://doi.org/10.1016/j.fgb.2020.103436

    CAS  Article  Google Scholar 

  25. El Mansy SM, Fatma Ahmed Abo Nouh FA, Mousa MK, Abdel-Azeem AM (2020) Endophytic fungi: diversity, abundance, and plant growth-promoting attributes. In: Mishra S, Kour D, Yadav N, Kumar A, Yadav A (eds) Agriculturally important fungi for sustainable agriculture. Fungal biology. Springer, Cham

    Google Scholar 

  26. Egamberdieva D, Wirth SJ, Alqarawi AA, Abd Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

    Article  PubMed  PubMed Central  Google Scholar 

  27. FAO (2017) The future of food and agriculture—trends and challenges. Rome. http://www.fao.org/3/a-i6583e.pdf. Accessed 26 June 2020

  28. Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452. https://doi.org/10.1093/jxb/err004

    CAS  Article  Google Scholar 

  29. Gamar MIA, Kisiala A, Emery RJN, Yeung EC, Stone SL, Qaderi MM (2019) Elevated carbon dioxide decreases the adverse effects of higher temperature and drought stress by mitigating oxidative stress and improving water status in Arabidopsis thaliana. Planta 250:1191–1214. https://doi.org/10.1007/s00425-019-03213-3

    CAS  Article  Google Scholar 

  30. Gibb M, Kisiala AB, Morrison EN, Emery RJN (2020) The origins and roles of methylthiolated cytokinins: evidence from among life kingdoms. Front Cell Dev Biol 8:605672. https://doi.org/10.3389/fcell.2020.605672

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goh DM, Cosme M, Kisiala AB, Mulholland S, Said ZM, Spichal L, Emery RJN, Declerck S, Guinel FC (2019) A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of pea. Front Plant Sci 10:262. https://doi.org/10.3389/fpls.2019.00262

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goyal A, Kalia A (2020) Fungal phytohormones: plant growth-regulating substances and their applications in crop productivity. In: Mishra S, Kour D, Yadav N, Kumar A, Yadav A (eds) Agriculturally important fungi for sustainable agriculture. Fungal biology. Springer, Cham

    Google Scholar 

  33. Großkinsky D, Edelsbrunner K, Pfeifhofer H, Van der Graaff E, Roitsch T (2013) Cis-and trans-zeatin differentially modulate plant immunity. Plant Signal Behav 8:e24798. https://doi.org/10.4161/psb.24798

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IEG, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsch T (2016) Cytokinin production by Pseudomonas fluorescens G20–18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:23310. https://doi.org/10.1038/srep23310

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gupta R, Pizarro L, Leibman-Markus M, Marash I, Bar M (2020) Cytokinin response induces immunity and fungal pathogen resistance, and modulates trafficking of the PRR LeEIX2 in tomato. Mol Plant Pathol 21:1287–1306. https://doi.org/10.1101/2020.03.23.003822

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2019) Trichoderma species: versatile plant symbionts. Phytopathology 109:6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW

    Article  PubMed  Google Scholar 

  37. Haque MM, Ilias GNM, Molla AH (2012) Impact of Trichoderma-enriched biofertilizer on the growth and yield of mustard (Brassica rapa L.) and tomato (Solanum lycopersicon Mill.). Agriculturists 10:109–119. https://doi.org/10.3329/agric.v10i2.13148

    Article  Google Scholar 

  38. Hinsch J, Vrabka J, Oeser B, Novák O, Galuszka P, Tudzynski P (2015) De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Env Microbiol 17:2935–2951. https://doi.org/10.1111/1462-2920.12838

    CAS  Article  Google Scholar 

  39. Jameson PE, Song J (2016) Cytokinin: a key driver of seed yield. J Exp Bot 67:593–606. https://doi.org/10.1093/jxb/erv461

    CAS  Article  Google Scholar 

  40. Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. MPMI 26:287–296. https://doi.org/10.1094/MPMI-06-12-0152-R

    CAS  Article  PubMed  Google Scholar 

  41. Jorge GL, Kisiala A, Morrison E, Aoki M, Nogueira APO, Emery RJN (2019) Endosymbiotic Methylobacterium oryzae mitigates the impact of limited water availability in lentil (Lens culinaris Medik.) by increasing plant cytokinin levels. Env Exp Bot 162:525–540. https://doi.org/10.1016/j.envexpbot.2019.03.028

    CAS  Article  Google Scholar 

  42. Kambhampati S, Kurepin LV, Kisiala AB, Bruce KE, Cober ER, Morrison MJ, Emery RJN (2017) Yield associated traits correlate with cytokinin profiles in developing pods and seeds of field-grown soybean cultivars. Field Crops Res 214:175–184. https://doi.org/10.1016/j.fcr.2017.09.009

    Article  Google Scholar 

  43. Karnwal A, Kaushik P (2011) Cytokinin production by fluorescent Pseudomonas in the presence of rice root exudates. Arch Phytopathology Plant Protect 44:1728–1735. https://doi.org/10.1080/03235408.2010.526768

    CAS  Article  Google Scholar 

  44. Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book/ASPB. https://doi.org/10.1199/tab.0168

    Article  Google Scholar 

  45. Kisiala A, Laffont C, Emery RJN, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. MPMI 26:1225–1231. https://doi.org/10.1094/MPMI-02-13-0054-R

    CAS  Article  PubMed  Google Scholar 

  46. Kisiala A, Kambhampati S, Stock NL, Aoki M, Emery RJN (2019) Quantification of cytokinins using high-resolution accurate-mass orbitrap mass spectrometry and parallel reaction monitoring (PRM). Anal Chem 91:15049–15056. https://doi.org/10.1021/acs.analchem.9b03728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz’mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291. https://doi.org/10.1016/j.plaphy.2014.08.015

    CAS  Article  PubMed  Google Scholar 

  48. Kudoyarova G, Arkhipova TN, Korshunova T, Bakaeva M, Loginov O, Dodd IC (2019) Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front Plant Sci 10:1368. https://doi.org/10.3389/fpls.2019.01368

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotech 97:9155–9164. https://doi.org/10.1007/s00253-013-5193-2

    CAS  Article  Google Scholar 

  50. Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94:fiy137

    Google Scholar 

  51. Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J (2020) The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res. https://doi.org/10.1016/j.micres.2020.126552

    Article  PubMed  Google Scholar 

  52. Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Gaudinová A (2013) Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64:2805–2815. https://doi.org/10.1093/jxb/ert131

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Martínez-Medina A, Alguacil MDM, Pascual JA, Van Wees SC (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815. https://doi.org/10.1007/s10886-014-0478-1

    CAS  Article  PubMed  Google Scholar 

  54. Morrison EN, Emery RJN, Saville BJ (2017) Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathol 66:726–742. https://doi.org/10.1111/ppa.12629

    CAS  Article  Google Scholar 

  55. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    CAS  Article  Google Scholar 

  56. Olmedo V, Casas-Flores S (2014) Chapter 32 - Molecular mechanisms of biocontrol in Trichoderma spp and their applications in agriculture. In: Gupta VK, Schmoll M et al (eds) Biotechnology and biology of trichoderma. Elsevier, Amsterdam

    Google Scholar 

  57. Pan H, Chen M, Feng H, Wei M, Song F, Lou Y, Cuia X, Wang H, Zhuge Y (2020) Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res 198:104540. https://doi.org/10.1016/j.still.2019.104540

    Article  Google Scholar 

  58. Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12:480–487. https://doi.org/10.1080/17429145.2017.1392625

    CAS  Article  Google Scholar 

  59. Persson BC, Björk GR (1993) Isolation of the gene (miaE) encoding the hydroxylase involved in the synthesis of 2-methylthio-cis-ribozeatin in tRNA of Salmonella typhimurium and characterization of mutants. J Bacteriol 175:7776–7785. https://doi.org/10.1128/jb.175.24.7776-7785.1993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Pertry I, Vaclavikova K, Depudt S, Galuszka P, Spichal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MCE, Strnad M, Holsters M, Tarkowski M, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA 106:929–934. https://doi.org/10.1073/pnas.0811683106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V (2020) Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS ONE 15:e0240886. https://doi.org/10.1371/journal.pone.0240886

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Powell AF, Paleczny AR, Olechowski H, Emery RJN (2013) Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol Biochem 64:33–40. https://doi.org/10.1016/j.plaphy.2012.12.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Rubio MB, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80:1864–1873. https://doi.org/10.1128/AEM.03375-13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449. https://doi.org/10.1146/annurev.arplant.57.032905.105231

    CAS  Article  Google Scholar 

  65. Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechn 21:686–696. https://doi.org/10.4014/jmb.1101.01012

    Article  Google Scholar 

  66. Sáenz-Mata J, Jiménez-Bremont JF (2012) HR4 gene is induced in the Arabidopsis-Trichoderma atroviride beneficial interaction. Int J Mol Sci 13:9110–9128. https://doi.org/10.3390/ijms13079110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66:4873–4884. https://doi.org/10.1093/jxb/erv214

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Shigenaga AM, Argueso CT (2016) No hormone to rule them all: Interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189. https://doi.org/10.1016/j.semcdb.2016.06.005

    CAS  Article  PubMed  Google Scholar 

  69. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Araniti LM, F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 9:762. https://doi.org/10.3390/plants9060762

    CAS  Article  PubMed Central  Google Scholar 

  70. Srivastava SN, Singh V, Awasthi SK (2006) Trichoderma induced improvement in growth, yield and quality of sugarcane. Sugar Tech 8:166–169. https://doi.org/10.1007/BF02943654

    Article  Google Scholar 

  71. Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hort 176:1–10. https://doi.org/10.1016/j.scienta.2014.06.022

    CAS  Article  Google Scholar 

  72. Stocco MC, Mónaco CI, Abramoff C, Lampugnani G, Salerno G, Kripelz N, Cordo CA, Consolo VF (2016) Selection and characterization of Argentine isolates of Trichoderma harzianum for effective biocontrol of Septoria leaf blotch of wheat. World J Microb Biot 32:49. https://doi.org/10.1007/s11274-015-1989-9

    CAS  Article  Google Scholar 

  73. Trdá L, Barešová M, Šašek V, Nováková M, Zahajská L, Dobrev PI, Motyka V, Burketová L (2017) Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Front Microb 8:1374. https://doi.org/10.3389/fmicb.2017.01374

    Article  Google Scholar 

  74. Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MPMI 21:1371–1383. https://doi.org/10.1094/MPMI-21-10-1371

    CAS  Article  PubMed  Google Scholar 

  75. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808. https://doi.org/10.1104/pp.109.141291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Xue AG, Guo W, Chen Y, Siddiqui I, Marchand G, Liu J, Ren C (2017) Effect of seed treatment with novel strains of Trichoderma spp. on establishment and yield of spring wheat. Crop Prot 96:97–102. https://doi.org/10.1016/j.cropro.2017.02.003

    Article  Google Scholar 

  78. Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61:1839–1851. https://doi.org/10.1093/jxb/erq052

    CAS  Article  PubMed  Google Scholar 

  79. Zhang P, Wang WQ, Zhang GL, Kaminek M, Dobrev P, Xu J, Gruissem W (2010) Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J Integr Plant Biol 52:653–669. https://doi.org/10.1111/j.1744-7909.2010.00956.x

    CAS  Article  PubMed  Google Scholar 

  80. Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863–4871. https://doi.org/10.1093/jxb/erv172

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Allen Xue from Ottawa Research and Development Centre, Agriculture and Agri-Food Canada for providing Trichoderma strains for the analysis. They also would like to thank Nourhène Grich for her assistance in growing Trichoderma strains and preparing fungal inoculum and Aaron Dain for his help in preparation of Arabidopsis in vitro cultures.

Funding

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant No: RGPIN-2018-05436 to RJNE) and a MITACS Globalink Research Internship to KMB.

Author information

Affiliations

Authors

Contributions

KMB, AK and RJNE contributed to the study conception and design. Material preparation, data collection and analysis were performed by KMB and AK. The first draft of the manuscript was written by KMB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kimberly Molina Bean.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Thomas Roitsch.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bean, K.M., Kisiala, A.B., Morrison, E.N. et al. Trichoderma Synthesizes Cytokinins and Alters Cytokinin Dynamics of Inoculated Arabidopsis Seedlings. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10466-4

Download citation

Keywords

  • Cis-zeatin
  • Cytokinin
  • Isopentenyladenine
  • Plant growth-promoting microorganisms
  • Plant–fungi interactions
  • Trans-zeatin