Heritability of Anatomical Characteristics in Cherry Interspecific Hybrids

Abstract

The aim of this study was to assess the stem anatomical structure of divergent cherry germplasm and estimate genetic variation and heritability as well as hybrid enhancement for anatomical traits of cherry interspecific hybrids. Plant material included 18 cherry genotypes representing seven species and species hybrids. Analyses included detailed anatomical investigations of 1- and 2-year-old stems’ macro and micro cross-sectional characteristics, theoretical hydraulic conductance calculations, as well as estimations of genotypic and phenotypic variances, coefficients of variation, broad sense heritability, hybrid enhancement, and potence ratio. Average vessel lumen areas and percentages of vessels belonging to different size classes exhibited moderate to high heritability (more than 60%). In contrast, macro-anatomical characteristics—cambial-induced secondary thickening and production of secondary wood (xylem) and secondary cortex (phloem), appeared to be more environmentally sensitive. The high heritability of xylem vessel properties and low heritability of cross-sectional traits, along with previous knowledge regarding cambial-induced secondary thickening observed in the same germplasm, could be used to inform parentage choice for rootstock breeding crosses. The results support the hypothesis that xylem vessel size is primarily under genetic control and exhibits different degrees of dominance—partial (very close to better parent), full, and overdominance. It is presumed that the MSU rootstocks ‘Cass’ and ‘Clare’, followed by ‘Benzie’ and ‘Lake’ would have the greatest size-controlling effect on grafted cherry varieties, while Prunus maackii, the P. maackii × ‘Montmorency’ hybrid , and ‘Montmorency’ × ‘Colt’ hybrid would act as invigorating rootstocks. Our findings suggest that future hybrids between Prunus cerasus and Prunus fruticosa, the ‘weaker’ parental species characterized by smaller vessels, would result in rootstock candidates with better size-controlling effect, while crossings between P. fruticosa and Prunus mahaleb should have well-balanced vessel lumen areas and cambial activity, which is a prerequisite for successful adaptation to changing environmental conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Beakbane AB, Thompson EC (1947) Anatomical studies of stems and roots of hardy fruit trees. IV. The root structure of some new clonal apple rootstocks budded with cox’s orange pippin. J Pomol Hortic Sci 23(4):206–211. https://doi.org/10.1080/03683621.1947.11513669

    Article  Google Scholar 

  2. Beaver JA, Iezzoni AF (1993) Allozyme inheritance in tetraploid sour cherry (Prunus cerasusL.). J Am Soc Hortic Sci 118:873–877. https://doi.org/10.21273/JASHS.118.6.873

    CAS  Article  Google Scholar 

  3. Beikircher B, De Cesare C, Mayr S (2013) Hydraulics of high-yield orchard trees: a case study of three Malus domestica cultivars. Tree Physiol 33(12):1296–1307. https://doi.org/10.1093/treephys/tpt096

    CAS  Article  PubMed  Google Scholar 

  4. Bhagasara VK, Ranwah BR, Meena BL, Khan R (2017) Estimation of GCV, PCV, heritability and genetic gain for yield and its related components in sorghum [Sorghum bicolor (L.) Moench]. Int J Curr Microbiol Appl Sci 6(5):1015–1024. https://doi.org/10.20546/ijcmas.2017.605.110

    Article  Google Scholar 

  5. Blagitz M, Botosso P, Longhi-Santos T, Bianchini E (2019) Tree rings in tree species of a seasonal semi-deciduous forest in southern Brazil: wood anatomical markers, annual formation and radial growth dynamic. Dendrochronologia 55:93–104. https://doi.org/10.1016/j.dendro.2019.04.006

    Article  Google Scholar 

  6. Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees Struct Funct 27(3):485–496. https://doi.org/10.1007/s00468-012-0802-8

    Article  Google Scholar 

  7. Burton GW (1952) Quantitative inheritance in grasses. Proceedings of 6th International Grassland Congress, 1: 277–283. Pennsylvania State College, State College, Pa., August 17-23, 1952

  8. Callesen O (1998) Recent developments in cherry rootstock research. Acta Hortic 468:219–228. https://doi.org/10.17660/ActaHortic.1998.468.27

    Article  Google Scholar 

  9. De Baerdemaeker NJ, Hias N, Van den Bulcke J, Keulemans W, Steppe K (2018) The effect of polyploidization on tree hydraulic functioning. Am J Bot 105(2):161–171. https://doi.org/10.1002/ajb2.1032

    Article  PubMed  Google Scholar 

  10. Dee JR, Palmer MW (2016) Application of herb chronology: annual fertilization and climate reveal annual ring signatures within the roots of US tallgrass prairie plants. Botany 94(4):277–288. https://doi.org/10.1139/cjb-2015-0217

    Article  Google Scholar 

  11. Dee JR, Palmer MW (2017) Annual rings of perennial forbs and mature oaks show similar effects of climate but inconsistent responses to fire in the North American prairie–forest ecotone. Can J Forest Res 47(6):716–726. https://doi.org/10.1139/cjfr-2016-0473

    CAS  Article  Google Scholar 

  12. Feng Y, Liang C, Li B, Wan T, Liu T, Cai Y (2017) Differential expression profiles and pathways of genes in drought resistant tree species Prunus mahaleb roots and leaves in response to drought stress. Sci Hortic 226:75–84. https://doi.org/10.1016/j.scienta.2017.07.057

    CAS  Article  Google Scholar 

  13. Floor J (1957) Report on the selection of a dwarfing rootstock for cherries. Euphytica 6:49–53. https://doi.org/10.1007/BF00179517

    Article  Google Scholar 

  14. Fogle FW (1975) Cherries. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette

    Google Scholar 

  15. Fonseca S, Patterson FL (1968) Hybrid vigor in a seven-parent diallel cross in common winter wheat (Triticum aestivum L.). Crop Sci 8(1):85–88. https://doi.org/10.2135/cropsci1968.0011183X000800010025x

    Article  Google Scholar 

  16. Fonti P, García-González I (2004) Suitability of chestnut earlywood vessel chronologies for ecological studies. New Phytol 163(1):77–86. https://doi.org/10.1111/j.1469-8137.2004.01089.x

    Article  Google Scholar 

  17. Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gärtner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185(1):42–53. https://doi.org/10.1111/j.1469-8137.2009.03030.x

    Article  PubMed  Google Scholar 

  18. Hajagos A, Végvári G (2013) Investigation of tissue structure and xylem anatomy of eight rootstock of sweet cherry (Prunus avium L.). Trees 27:53–60. https://doi.org/10.1007/s00468-012-0766-8

    Article  Google Scholar 

  19. Hayes HK, Immer FR, Smith DC (1955) Methods of plant breeding. Graw Hill Book Co., Inc, New York, p 551

    Google Scholar 

  20. Hennig A, Kleinschmit JRG, Schoneberg S, Löffler S, Janßen A, Polle A (2015) Water consumption and biomass production of protoplast fusion lines of poplar hybrids under drought stress. Front Plant Sci 6:1–14. https://doi.org/10.3389/fpls.2015.00330

    Article  Google Scholar 

  21. Hrotkó K (2008) Progress in cherry rootstock research. Acta Hortic 795:171–177. https://doi.org/10.17660/ActaHortic.2008.795.22

    Article  Google Scholar 

  22. Hrotkó K (2016) Potentials in Prunus mahaleb L. for cherry rootstock breeding. Sci Hortic 205:70–78. https://doi.org/10.1016/j.scienta.2016.04.015

    Article  Google Scholar 

  23. Hrotkó K, Facsar G (1996) Taxonomic classification of Hungarian populations of Prunus fruticosa (Pall.) Woronow hybrids. Acta Hortic 410:495–498. https://doi.org/10.17660/ActaHortic.1996.410.80

    Article  Google Scholar 

  24. Jaquish LL, Ewers FW (2001) Seasonal conductivity and embolism in the roots and stems of two clonal ring-porous trees, Sassafras albidum (Lauraceae) and Rhus typhina (Anacardiaceae). Am J Bot 88(2):206–212. https://doi.org/10.2307/2657011

    CAS  Article  PubMed  Google Scholar 

  25. Kappel F, Andrew G, Hrotko K, Schuster M (2012) Cherry. In: Badenes ML, Byrne DH (eds) Fruit breeding, handbook of plant breeding 8. Springer, Berlin, pp 459–495. https://doi.org/10.1007/978-1-4419-0763-9_13

    Google Scholar 

  26. Knight RL (1969) Abstract bibliography of fruit breeding and genetics. Easter Press, London

    Google Scholar 

  27. Lang GA (2000) Precocious, dwarfing and productive—how will new cherry rootstocks impact the sweet cherry industry? HortTechnology 10:719–725. https://doi.org/10.21273/HORTTECH.10.4.719

    Article  Google Scholar 

  28. Lauri PE, Gorza O, Cochard H, Martinez S, Celton J, Ripetti V, Lartaud M, Bry X, Trottier C, Costes E (2011) Genetic determinism of anatomical and hydraulic traits within an apple progeny. Plant Cell Environ 34(8):1276–1290. https://doi.org/10.1111/j.1365-3040.2011.02328.x

    Article  PubMed  Google Scholar 

  29. Li WL, Berlyn GP, Ashton PMS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83:15–20. https://doi.org/10.1002/j.1537-2197.1996.tb13869.x

    Article  Google Scholar 

  30. Li WD, Biswas DK, Xu H, Xu CQ, Wang XZ, Liu JK, Jiang GM (2009) Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct Plant Biol 36:783–792. https://doi.org/10.1071/FP09022

    CAS  Article  PubMed  Google Scholar 

  31. Ljubojević M, Ognjanov V, Zorić L, Maksimović I, Lj M, Bosnjaković D, Barać G (2013) Modeling of water movement through cherry plant as preselecting tool for prediction of tree vigor. Sci Hortic 160:189–197. https://doi.org/10.1016/j.scienta.2013.05.032

    Article  Google Scholar 

  32. Ljubojević M, Zorić L, Maksimović I, Dulić J, Miodragović M, Barać G, Ognjanov V (2017) Anatomically assisted cherry rootstock selection. Sci Hortic 217:197–208. https://doi.org/10.1016/j.scienta.2017.01.049

    Article  Google Scholar 

  33. Ljubojević M, Maksimović I, Lalić B, Dekić L, Narandžić T, Magazin N, Dulić J, Miodragović M, Barać G, Ognjanov V (2018) Environmentally-related cherry root cambial plasticity. Atmosphere 9:358. https://doi.org/10.3390/atmos9090358

    Article  Google Scholar 

  34. Long L, Iezzoni A, Seavert C, Auvil T, Kaiser C, Brewer LJ (2019) New cherry rootstock and cultivar interactions directly affect orchard profitability. Acta Hortic 1235:197–205. https://doi.org/10.17660/ActaHortic.2019.1235.26

    Article  Google Scholar 

  35. Lopez G, Pallas B, Martinez S, Lauri PE, Regnard JL, Durel CE, Costes E (2017) Heritability and genetic variation of plant biomass, transpiration, and water use efficiency for an apple core-collection. Acta Hortic 1172:317–322. https://doi.org/10.17660/ActaHortic.2017.1172.59

    Article  Google Scholar 

  36. Lush JL (1940) Intra-sire correlations or regressions of offspring on dam as a method of estimating heritability of characteristics. J Anim Sci 1940(1):293–301. https://doi.org/10.2527/jas1940.19401293x

    Article  Google Scholar 

  37. Maherali H, Walden AE, Husband BC (2009) Genome duplication and the evolution of physiological responses to water stress. New Phytol 184:721–731. https://doi.org/10.1111/j.1469-8137.2009.02997.x

    CAS  Article  PubMed  Google Scholar 

  38. Martínez-Alcántara B, Rodriguez-Gamir J, Martínez-Cuenca MR, Iglesias DJ, Primo-Millo E, Forner-Giner MA (2013) Relationship between hydraulic conductance and citrus dwarfing by the flying dragon rootstock (Poncirus trifoliata L. Raft var monstruosa). Trees 27: 629–638. https://doi.org/10.1007/s00468-012-0817-1

    Article  Google Scholar 

  39. Mather K, Jinks JL (1971) Biometrieal genetics, 2nd edn. Chapman & Hall, London. https://doi.org/10.1007/978-1-4613-3387-6

    Google Scholar 

  40. Mladin G, Ancu S, Mazilu C (2010) A new interspecific vegetative rootstock for cherry studies in the nursery stage in interaction with six varieties. Sci Pap Res Inst Fruit Grow Pitesti 26:139–143

    Google Scholar 

  41. Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. In: Belhassen E (ed) Drought tolerance in higher plants: genetical, physiological and molecular biological analysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1299-6_2

    Google Scholar 

  42. Olden EJ, Nybom N (1968) On the origin of Prunus cerasus L. Hereditas 9:327–345. https://doi.org/10.1111/j.1601-5223.1968.tb02181.x

    Article  Google Scholar 

  43. Perry RL (1987) Cherry rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley and Sons., Inc, New York, pp 217–264

    Google Scholar 

  44. Pumijumnong N, Park WK (1999) Vessel chronologies from teak in northern Thailand and their climatic signal. IAWA J 20(3):285–294. https://doi.org/10.1163/22941932-90000691

    Article  Google Scholar 

  45. Richards RA, Passioura JB (1981) Seminal root morphology and water use of wheat II genetic variation. Crop Sci 21:253–255. https://doi.org/10.2135/cropsci1981.0011183X002100020012x

    Article  Google Scholar 

  46. Rodrigues LC, Morales MR, Fernandes AJB, Ortiz JM (2008) Morphological characterisation of sweet and sour cherry cultivars in a germplasm bank at Portugal. Genet Resour Crop Evol 5:593–601. https://doi.org/10.1007/s10722-007-9263-0

    Article  Google Scholar 

  47. Sansavini S, Lugli S (1998) Performance of V-trained cherry orchard with new dwarf rootstocks. Acta Hortic 468:265–278. https://doi.org/10.17660/ActaHortic.1998.468.31

    Article  Google Scholar 

  48. Sansavini S, Lugli S (2014) New rootstocks for intensive sweet cherry plantations. Acta Hortic 1020:411–434. https://doi.org/10.17660/ActaHortic.2014.1020.59

    Article  Google Scholar 

  49. Sansavini S, Lugli S, Grandi M (1994) Nuovi impianti intensivi di ciliegio: psitivo esito di una prova decennale con prtainnesti nanizzanti. Frutticoltura 6:35–41

    Google Scholar 

  50. Schmidt H, Gruppe W (1988) Breeding dwarfing rootstocks for sweet cherries. HortScience 23(1):112–114

    Google Scholar 

  51. Schweingruber FH, Börner A, Schulze ED (2008) Atlas of woody plant stems: evolution, structure and environmental modifications. Springer, Berlin. https://doi.org/10.1007/978-3-540-32525-3

    Google Scholar 

  52. Singh RK, Chaudhary BD (1976). In: Varghese JN (ed) Biometrical techniques in genetics and breeding. International Bioscience Publish, Hisar, pp 1–301

    Google Scholar 

  53. Smith HH (1952) Fixing transgressive vigour in Nicotiana Rustica. Heterosis. Iowa State College Press, Ames

    Google Scholar 

  54. Stojnić S, Sass-Klaassen U, Orlović S, Matović B, Eilmann B (2013) Plastic growth response of European beech provenances to dry site conditions. IAWA J 34(4):475–484. https://doi.org/10.1163/22941932-00000038

    Article  Google Scholar 

  55. Tardif JC, Conciatori F (2006) Influence of climate on tree rings and vessel features in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Can J For Res 36(9):2317–2330. https://doi.org/10.1139/X06-133

    Article  Google Scholar 

  56. Tombesi S, Johnson SR, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot 105:327–331. https://doi.org/10.1093/aob/mcp281

    Article  PubMed  Google Scholar 

  57. Tombesi S, Almehdi A, DeJong TM (2011) Phenotyping vigor control capacity of new peach rootstocks by xylem vessel analysis. Sci Hortic 127:353–357. https://doi.org/10.1016/j.scienta.2010.11.007

    Article  Google Scholar 

  58. Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360. https://doi.org/10.1111/j.1469-8137.1991.tb00035.x

    Article  Google Scholar 

  59. Von Arx G, Archer SR, Hughes MK (2012) Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann Bot 109(6):1091–1100. https://doi.org/10.1093/aob/mcs030

    Article  Google Scholar 

  60. Zhang F, Xue H, Lu X, Zhang B, Wang F, Ma Y, Zhang Z (2015) Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 29:1773–1780. https://doi.org/10.1007/s00468-015-1258-4

    CAS  Article  Google Scholar 

  61. Zhang X, Zhang K, Yan G, Wang J, Zhou Y (2017) Sweet cherry rootstock breeding program at Beijing Institute of Forestry and Pomology. Acta Hortic 1161:87–90. https://doi.org/10.17660/ActaHortic.2017.1161.15

    Article  Google Scholar 

  62. Zorić L, Ljubojević M, Lj M, Luković J, Ognjanov V (2012) Anatomical characteristics of cherry rootstocks as possible preselection tools for prediction of the tree vigor. J Plant Growth Regul 31:320–331. https://doi.org/10.1007/s00344-011-9243-7

    CAS  Article  Google Scholar 

  63. Wimmer R (2002) Wood anatomical features in tree-rings as indicators of environmental change. Dendrochronologia 20(1–2):21–36. https://doi.org/10.1078/1125-7865-00005

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to express their gratitude to Dr Linda Hanson for providing the light microscope and supporting diagnostic instruments necessary for the anatomical analysis.

Funding

This research via postdoctoral training in the United States of America was supported by ‘Startup for science’ scholarship (raised by Philip Morris Company and the Center for leadership development), ‘For Women in Science’ scholarship (raised by L’Oreal, UNESCO and Serbian Ministry of Education and Science), and ‘Dr. Zoran Đinđić’ scholarship funded by The University of Novi Sad.

Author information

Affiliations

Authors

Contributions

ML: conceptualization, methodology, investigation, analysis, and original draft preparation; AS: analysis, management, and editing; VO: writing—reviewing and editing; and AI: resources, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Mirjana Ljubojević.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Rhonda Peavy.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ljubojević, M., Sebolt, A., Ognjanov, V. et al. Heritability of Anatomical Characteristics in Cherry Interspecific Hybrids. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10357-8

Download citation

Keywords

  • Breeding
  • Heritability
  • Hybrid enhancement
  • Hydraulic conductance
  • Prunus
  • Stem anatomy
  • Xylem