Skip to main content
Log in

VviFSK and VviFTK, Two Novel Genes Encoding Putative Non-RD Receptor Kinases Associated with Reproductive Development in Grapevine

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Although several genes homologous to those involved in the modulation of reproductive development in the model plant Arabidopsis thaliana have been identified in the Vitis vinifera genome, the regulatory network associated with pollen development, pollen tube elongation, and fecundation in grapevine is largely unknown. In Arabidopsis, receptor kinases play essential roles in pollen tube growth and guidance, leading to proper fertilization and fruit initiation. Comparing the transcriptomic profiles of flowers and early developing berries, two grapevine genes encoding proteins with structural domains corresponding to non-RD receptor kinases were identified. The first of them, VviFTK (Vitis vinifera Flower and Tendril Kinase), is transcribed in flowers at pre-anthesis and in tendrils and shares high sequence homology with At3g03770 gene from Arabidopsis which encodes a putative phloem-specific receptor kinase of unknown function. The second gene, VviFSK (Vitis vinifera Flower and Seed Kinase), is mainly expressed in flowers at anthesis stage and in immature seeds and codes for a protein with high similarity to ScORK17, a receptor kinase involved in the ovule and seed development regulation in Solanum chacoense. VviFSK shows different expression patterns in two cultivars with opposite tendency to parthenocarpic fruit development (PFD) and its transcription is induced in response to exogenously added sucrose. In concordance with the expression mode of VviFSK, the in silico analysis of its promoter region indicates the presence of cis regulatory sequences recognized by floral homeotic transcription factors as well as elements associated with seed-specific expression and sugar induction of gene transcription. These results suggest that VviFSK protein plays a role in the seed development process in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S (2005) The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17:3337–3349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almada R, Cabrera N, Casaretto JA, Ruiz-Lara S, González E (2009) VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep 28:1193–1203

    CAS  PubMed  Google Scholar 

  • Alva O, Roa-Roco R, Pérez-Día R, Yáñez M, Tapia J, Moreno Y, Ruiz-Lara S, González E (2015) Pollen morphology and boron concentration in floral tissues as factors triggering natural and GA-induced parthenocarpic fruit development in grapevine. PLoS ONE 10:e0139503. https://doi.org/10.1371/journal.pone.0139503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz A (2003) Spermidine and related-metabolic inhibitors modulate sugar and amino acid levels in Vitis vinifera L.: possible relationships with initial fruitlet abscission. J Exp Bot 54:355–363

    CAS  PubMed  Google Scholar 

  • Becraft P (2002) Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol 18:163–192. https://doi.org/10.1146/annurev.cellbio.18.012502.083431

    Article  CAS  PubMed  Google Scholar 

  • Bendtsen J, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    PubMed  Google Scholar 

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–13623

    CAS  PubMed  Google Scholar 

  • Boss P, Thomas M (2000) Tendrils, inflorescences and fruitfulness: a molecular perspective. Aust J Grape Wine Res 6:168–174

    Google Scholar 

  • Calonje M, Cubas P, Martínez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canales C, Bhatt AM, Scott R, Dickinson H (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol 12:1718–1727

    CAS  PubMed  Google Scholar 

  • Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59:2579–2596

    CAS  PubMed  Google Scholar 

  • Castells E, Casacuberta JM (2007) Signalling through kinase-defective domains: the prevalence of atypical receptor-like kinases in plants. J Exp Bot 58:3503–3511

    CAS  PubMed  Google Scholar 

  • Colcombert J, Boisson-Dernier A, Ros-Palau R, Vera C, Schroeder J (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17:3350–3361

    Google Scholar 

  • Colin L, Cholet C, Geny L (2002) Relationships between endogenous polyamines, cellular structure and arrested growth of grape berries. Aust J Grape Wine Res 8:101–108

    CAS  Google Scholar 

  • Coombe B (1995) Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res 1:104–110

    Google Scholar 

  • Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2:e2

    PubMed  PubMed Central  Google Scholar 

  • Dardick C, Schwessinger B, Ronald P (2012) Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr Opin Plant Biol 15:358–366

    CAS  PubMed  Google Scholar 

  • DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark S (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J 45:1–16

    CAS  PubMed  Google Scholar 

  • Díaz-Riquelme J, Martínez-Zapater JM, Carmona MJ (2014) Transcriptional analysis of tendril and inflorescence development in grapevine (Vitis vinifera L.). PLoS ONE 9:e92339

    PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036. https://doi.org/10.1093/mp/sst061

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660. https://doi.org/10.1126/science.1143562

    Article  CAS  PubMed  Google Scholar 

  • Fernández J, Talle B, Wilson Z (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891

    Google Scholar 

  • Franklin-Tong N (2010) Plant fertilization: bursting pollen tubes! Curr Biol 20:R681-683. https://doi.org/10.1016/j.cub.2010.06.038

    Article  CAS  PubMed  Google Scholar 

  • Gärtel W (1993) Grapes. In: Bennett WF (ed) Nutrient deficiencies and toxicities in crop plants. APS Press, St. Paul, pp 177–183

    Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germain H, Houde J, Gray-Mitsumune M, Sawasaki T, Endo Y, Rivoal J, Matton DP (2007) Characterization of ScORK28, a transmembrane functional protein receptor kinase predominantly expressed in ovaries from the wild potato species Solanum chacoense. FEBS Lett 581:5137–5142

    CAS  PubMed  Google Scholar 

  • Germain H, Gray-Mitsumune M, Lafleur E, Matton DP (2008) ScORK17, a transmembrane receptor-like kinase predominantly expressed in ovules is involved in seed development. Planta 228:851–862

    CAS  PubMed  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong J, Wei T, Zhang N, Jamitzky F, Heckl WM, Rössle SC, Stark RW (2010) TollML: a database of toll-like receptor structural motifs. J Mol Model 16:1283–1289

    CAS  PubMed  Google Scholar 

  • Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    CAS  PubMed  Google Scholar 

  • Hecht V, Vielle-Calzada J-P, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hord C, Chen C, Deyoung B, Clark S, Ma H (2006) The BAM1/BAM2 receptor like-kinases are important regulators of Arabidopsis early anther development. Plant Cell 18:1667–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier C, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    PubMed  PubMed Central  Google Scholar 

  • Hunter S et al (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–D215

    CAS  PubMed  Google Scholar 

  • Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann J, Meyerowitz E (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    CAS  PubMed  Google Scholar 

  • Jung CJ, Hur YY, Yu H-J, Noh J-H, Park K-S, Lee HJ (2014) Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS ONE 9:e95634

    PubMed  PubMed Central  Google Scholar 

  • Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    PubMed  Google Scholar 

  • Kanaoka M, Higashiyama T (2015) Peptide signaling in pollen tube guidance. Curr Opin Plant Biol 28:127–136

    CAS  PubMed  Google Scholar 

  • Keller M (2005) Deficit irrigation and vine mineral nutrition. Am J Enol Vitic 56:267–283

    CAS  Google Scholar 

  • Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69

    Google Scholar 

  • Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–971

    CAS  PubMed  Google Scholar 

  • Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    CAS  PubMed  Google Scholar 

  • Kühn N, Arce-Johnson P (2012) Pollination: A key event controlling the expression of genes related to phytohormone biosynthesis during grapevine berry formation. Plant Signal Behav 7:7–11

    PubMed  PubMed Central  Google Scholar 

  • Li J (2011) Direct involvement of leucine-rich repeats in assembling ligand-triggered receptor-coreceptor complexes. Proc Natl Acad Sci USA 108:8073–8074. https://doi.org/10.1073/pnas.1104057108

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116–125

    PubMed  PubMed Central  Google Scholar 

  • Li H, Yang W (2016) RLKs orchestrate the signaling in plant male-female interaction. Sci China Life Sci 59:867–877

    CAS  PubMed  Google Scholar 

  • Li C, Wu H, Cheung A (2016) FERONIA and her pals: functions and mechanisms. Plant Physiol 171:2379–2392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang C, Guo Y, Niu W, Wang Y, Xu Y (2017) Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitisvinifera L.). BMC Genom 18:744

    Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331. https://doi.org/10.1016/j.cub.2009.06.064

    Article  CAS  PubMed  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge, pp 107–110

    Google Scholar 

  • Muschietti J, Wengier D (2018) How many receptor-like kinases are required to operate a pollen tube. Curr Opin Plant Biol 41:73–82

    CAS  PubMed  Google Scholar 

  • Nodine MD, Bryan AC, Racolta A, Jerosky KV, Tax FE (2011) A few standing for many: embryo receptor-like kinases. Trends Plant Sci 16:211–217. https://doi.org/10.1016/j.tplants.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  • Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31:3635–3641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Cortés H et al (2005) Chilean effort for improving fruit quality in grapevine: a genomic approach to understanding seed formation, fruit ripening and pathogen response. Acta Hort 689:505

    Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:1

    Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Ham BK, Li G, Lucas WJ (2011) Vascular expression in Arabidopsis is predicted by the frequency of CT/GA-rich repeats in gene promoters. Plant J 67:130–144. https://doi.org/10.1111/j.1365-313X.2011.04581.x

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res 32:W249–W252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci 95:5857–5864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shatkay H, Höglund A, Brady S, Blum T, Dönnes P, Kohlbacher O (2007) SherLoc: high-accuracy prediction of protein subcellular localization by integrating text and protein sequence data. Bioinformatics 23:1410–1417

    CAS  PubMed  Google Scholar 

  • Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KF, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi H, Higashiyama T (2016) Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis. Nature 531:245–248

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, p 2013

    Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker SC, Hoefert L (1968) Ontogeny of the tendril in Vitis vinifera. Am J Bot 55:1110–1119

    Google Scholar 

  • Vasconcelos M, Greven M, Winefield C, Trought M, Raw V (2009) The flowering process of Vitisvinifera: a review. Am J Enol Vitic 60:411–434

    CAS  Google Scholar 

  • Wang T, Liang L, Xue Y, Jia P, Chen W, Zhang M, Wang Y, Li H, Yang W (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531:241–244

    CAS  PubMed  Google Scholar 

  • Weaver R, McCune S, Hale C (1962) Effect of plant regulators on set and berry development in certain seedless varieties of Vitisvinifera L. Vitis 3:84–96

    Google Scholar 

  • Wigge P, Kim M, Jaeger K, Busch W, Schmid M, Lohmann J, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    CAS  PubMed  Google Scholar 

  • Wijeratne A, Zhang W, Sun Y, Liu W, Albert R, Zheng Z, Oppenheimer D, Zhao D, Ma H (2007) Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J 52:14–29

    CAS  PubMed  Google Scholar 

  • Wilson Z, Zhang D (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Botany 60:1479–1492

    CAS  Google Scholar 

  • Yan W, Chen D, Kaufmann K (2016) Molecular mechanisms of floral organ specification by MADS domain proteins. Curr Opin Plant Biol 29:154–162. https://doi.org/10.1016/j.pbi.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Chen Y, Lu C, Hwang J (2006) Prediction of protein subcellular localization. Proteins Struct Funct Bioinform 64:643–651

    CAS  Google Scholar 

  • Zhang N, Wen J, Zimmer EA (2015) Expression patterns of AP1, FUL, FT and LEAFY orthologs in Vitaceae support the homology of tendrils and inflorescences throughout the grape family. J Syst Evol 53:469–476. https://doi.org/10.1111/jse.12138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant 1161237. S. González was supported by Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the design and implementation of the research, the analysis of the results, and the writing of the manuscript.

Corresponding author

Correspondence to Simón Ruiz-Lara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Rhonda Peavy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 KB)

Supplementary file2 (DOCX 17 KB)

Supplementary file3 (DOCX 16 KB)

344_2021_10346_MOESM4_ESM.docx

Supplementary figure 1 Nucleotide sequence of the EST VVCCGS2117F10.b identified in a cDNA library obtained from small berries of grapevine with homology to At3g03770 from A. thaliana. Supplementary file4 (DOCX 13 KB)

Supplementary file5 (JPG 377 KB)

Supplementary file6 (JPG 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, S.A., Pérez-Díaz, R., González-Villanueva, E. et al. VviFSK and VviFTK, Two Novel Genes Encoding Putative Non-RD Receptor Kinases Associated with Reproductive Development in Grapevine. J Plant Growth Regul 41, 875–888 (2022). https://doi.org/10.1007/s00344-021-10346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10346-x

Keywords

Navigation