Skip to main content
Log in

Effect of Vanadium on Testa, Seed Germination, and Subsequent Seedling Growth of Alfalfa (Medicago sativa L.)

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Seed germination is the critical initial phase in the life cycle of plant and it is affected by various exogenous factors, including heavy metals. Seed germination and subsequent seedling growth of alfalfa (Medicago sativa L.) incubated in glass Petri dish in presence of elevated concentrations of pentavalent vanadium V(V) solution (0, 0.1, 0.5, 2, 4, 10, 50 mg L−1 V, supplied as NaVO3·2H2O) were evaluated. Results showed that vanadium did not (P > 0.05) affect seed germination, final survival rate, and seedling height of alfalfa when exogenously treated dosages were ≤ 10 mg L−1 V, whereas the root vitality and root elongation were distinctly inhibited at ≥ 0.5 mg L−1 V treatments. A progressively deepened testa color at increasing vanadium concentrations during germination and an apparent modified structure of the seed coat at 50 mg L−1 V compared to control in alfalfa were noted. Alfalfa seeds showed rapid and almost synchronous radicle emergence, independently of the vanadium concentration in the medium. The accumulation of vanadium in testa is beneficial to alleviate its toxicity to the seed germination of alfalfa. Leaf proline content was dramatically increased at ≥ 0.5 mg L−1 V treatments compared with the control. Emerged seedlings displayed enough vigor and health to potentially colonize in the vanadium-contained matrix. Thus, alfalfa represents a good candidate for phytoremediation approach aimed at decontaminating environments when vanadium concentrations are within the determined thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aihemaiti A, Gao YC, Meng Y, Chen XJ, Liu JW, Xiang HL, Xu YW, Jiang JG (2019a) Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediatioin of vanadium-contaminated sites. Sci Total Environ 712:135637

    Article  PubMed  CAS  Google Scholar 

  • Aihemaiti A, Jiang JG, Blaney L, Zou Q, Gao YC, Meng Y, Yang M, Xu YW (2019b) The detoxification effect of liquid digestate on vanadium toxicity to seed germination and seedling growth of dog’s tail grass. J Hazard Mater 369:456–464

    Article  CAS  PubMed  Google Scholar 

  • Aihemaiti A, Jiang JG, Gao YC, Meng Y, Zou Q, Yang M, Xu YW, Han SY, Yan WW, Tuerhong T (2019c) The effect of vanadium on essential element uptake of Setaria viridis' seedlings. J Environ Manag 237:399–407

    Article  CAS  Google Scholar 

  • Akinci IE, Akinci S (2010) Effect of chromium toxicity on germination and early seedling growth in melon (Cucumis melo L.). Afr J Biotechnol 9(29):4589–4594

    CAS  Google Scholar 

  • Ali S, Rizwan M, Arif MS, Ahmad R, Hasanuzzaman M, Ali B, Hussain A (2019) Approaches in enhancing thermotolerance in plants: an updated review. J Plant Growth Regul 39:456–480

    Article  CAS  Google Scholar 

  • Anke M (2004a) Vanadium: an element both essential and toxic to plants, animals and humans? Anal Real Acad Nac Farm 70:961–999

    CAS  Google Scholar 

  • Anke M (2004b) Vanadium. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment: Occurrence, analysis and biological relevance Part III Metals and their Compounds, vol 2, 2nd edn. Wilcy-VCH, Weinheim, p 1174

    Google Scholar 

  • Antipov AN (2013) Vanadium in live organisms. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, p 2319

    Google Scholar 

  • Bae J, Benoit DL, Watson AK (2016) Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ Pollut 213:112–118

    Article  CAS  PubMed  Google Scholar 

  • Baken S, Larsson MA, Gustafsson JP, Cubadda F, Smolders E (2012) Ageing of vanadium in soils and consequences for bioavailability. Eur J Soil Sci 63:839–847

    Article  CAS  Google Scholar 

  • Bakhshandeh E, Pirdashti H, Vahabinia F, Gholamhossieni M (2020) Quantification of the effect of environmental factors on seed germination and seedling growth of eruca (Eruca sativa) using mathematical models. J Plant Growth Regul 39:190–204

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Ben Rejeb K, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination and dormancy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2007) Canadian soil Quality Guidelines for the Protection of Environmental and Human Health: Summary Tables https://st-ts.ccme.ca/en/index.html

  • Chen T, Li TQ, Yang JY (2016) Damage suffered by swamp morning glory (Ipomoea aquatica Forsk) exposed to vanadium (V). Environ Toxicol Chem 35(3):695–701

    Article  CAS  PubMed  Google Scholar 

  • Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Dar MI, Naikoo MI, Rehman F, Naushin F, Khan FA (2016) Proline accumulation in plants: roles in stress tolerance and plant development. In: Iqbal N, Nazar R, Khan NA (eds) Osmolytes and plants acclimation to changing environment: emerging omics Technologies. Springer, New Delhi, pp 155–166

    Chapter  Google Scholar 

  • Falhof J, Pedersen JT, Fuglsang AT, Palmgren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337

    Article  CAS  PubMed  Google Scholar 

  • FAO (1985) Water quality for agriculture. Irrigation and drainage paper, 29, Rev 1st edn. FAO, Rome, p 96

    Google Scholar 

  • Gan CD, Liu M, Lu J, Yang JY (2020) Adsorption and desorption characteristics of vanadium (V) on silica. Water Air Soil Pollut 231:10

    Article  CAS  Google Scholar 

  • García-Jiménez A, Trejo-Téllez LI, Guillén-Sánchez D, Gómez-Merino FC (2018) Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 13(8):e0201908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GB 26452−2011 (2011) Discharge standard of pollutants for Vanadium Industry. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/201104/t20110420_209476.shtml Issued on Apr. 2th, 2011 and implemented on Oct. 1st, 2011

  • Hope BK (1997) An assessment of the global impact of anthropogenic vanadium. Biogeochemistry 37:1–13

    Article  CAS  Google Scholar 

  • Huang ZY, Liu SS, Bradford KJ, Huxman TE, Venable DL (2016) The contribution of germination functional traits to population dynamics of a desert plant community. Ecology 97:250–261

    Article  PubMed  Google Scholar 

  • Huang Z, Liu Y, Cui Z, Fang Y, He HH, Liu BR, Wu GL (2018) Soil water storage deficit of alfalfa (Medicago sativa) grasslands along ages in arid area (China). Field Crop Res 221:1–6

    Article  Google Scholar 

  • Imtiaz M, Rizwan MS, Xiong SL, Li HL, Ashraf M, Shahzad SM, Shahzad M, Rizwan M, Tu SX (2015a) Vanadium, recent advancements and research prospects: a review. Environ Int 80:79–88

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz M, Tu SX, Xie ZJ, Han D, Ashraf M, Rizwan MS (2015b) Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 390:17–27

    Article  CAS  Google Scholar 

  • Imtiaz M, Mushtaq MA, Rizwan MS, Arif MS, Yousaf B, Ashraf M, Shuanglian X, Rizwan M, Mehmood S, Tu SX (2016) Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium. Environ Sci Pollut Res 23:19787–19796

    Article  CAS  Google Scholar 

  • Imtiaz M, Ashraf M, Rizwan MS, Nawaz MA, Rizwan M, Mehmood S, Yousaf B, Yuan Y, Ditta A, Mumtaz MA, Ali M, Mahmood S, Tu SX (2018) Vanadium toxicity in chickpea (Cicer arietinum, L.) grown in red soil: effects on cell death, ROS and antioxidative systems. Ecotoxicol Environ Saf 158:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Colville L (2011) Metals and seeds: biochemical and molecular implications and their significance for seed germination. Environ Exp Bot 72:93–105

    Article  CAS  Google Scholar 

  • Lazaridis NK, Jekel M, Zouboulis AI (2003) Removal of Cr(VI), Mo(VI), and V(V) ions from single metal aqueous solutions by sorption or nanofiltration. Sep Sci Technol 38(10):2201–2219

    Article  CAS  Google Scholar 

  • Lepp NW (1977) The effect of vanadium on germination and seedling growth of lettuce (Lactuca sativa L. C. V. Salad Bowi). Z Pflanzenphysiol Bd 83:185–188

    Article  CAS  Google Scholar 

  • Li WQ, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50

    Article  CAS  Google Scholar 

  • Liu XL, Zhang SZ, Shan XQ, Zhu YG (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  PubMed  Google Scholar 

  • Moïse JA, Han S, Gudynaitę-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. Vitro Cell Dev Biol Plant 41:620–644

    Article  Google Scholar 

  • Morrell BG, Lepp NW, Phipps DA (1986) Vanadium uptake by higher plants: some recent developments. Environ Geochem Health 8:14–18

    Article  CAS  PubMed  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Arch Environ Contam Toxicol 43:203–213

    Article  CAS  PubMed  Google Scholar 

  • O'neill SD, Spanswick RM (1984) Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol 75:586–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70(5):3091–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago stiva L.). Bull Environ Contam Toxicol 66:727–734

    CAS  PubMed  Google Scholar 

  • Ran LP, Pi MX, Wu J, Jiang JJ, Wang YP (2017) A comparative study of the seed structure between resynthesized allotetraploid and their diploid parents. Protoplasma 254:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Rayapati PJ, Stewart CR, Hack E (1989) Pyrroline-5-carboxylate reductase is in pea (Pisum sativum L.) leaf chloroplast. Plant Physiol 91:581–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehder D (2015) The role of vanadium in biology. Metallomics 7:730–742

    Article  CAS  PubMed  Google Scholar 

  • Ringelband U, Hehl O (2000) Kinetics of vanadium bioaccumulation by the brackish water hydroid Cordylophora caspia (Pallas). Bull Environ Contam Toxicol 65:486–493

    Article  CAS  PubMed  Google Scholar 

  • Ruf M, Brunner I (2003) Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiol 23:257–263

    Article  PubMed  Google Scholar 

  • Salvatore MD, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73:1461–1464

    Article  PubMed  CAS  Google Scholar 

  • Seneviratne M, Rajakaruna N, Rizwan M, Madawala HMSP, Ok YS, Vithanage M (2017) Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ Geochem Health 41:1813–1831

    Article  PubMed  CAS  Google Scholar 

  • Shafiq M, Iqbal MZ (2005) The toxicity effects of heavy metals on germination and seedling growth of Cassia siamea Lamk. J New Seeds 7(4):95–105

    Article  Google Scholar 

  • Shafiq M, Iqbal MZ, Athar M (2008) Effect of lead and cadmium germination and seedling growth of Leucaena leucocephala. J Appl Sci Environ Manag 12:61–66

    Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer International Publishing, Basel, pp 1–25

    Google Scholar 

  • Siddiqui MM, Abbasi BH, Ahmad N, Ali M, Mahmood T (2014) Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicol Ind Health 30(3):238–249

    Article  CAS  PubMed  Google Scholar 

  • Sim RE, Brown HE, Teixeira EI, Moot DJ (2017) Soil water extraction patterns of lucerne grown on stony soils. Plant Soil 414:95–112

    Article  CAS  Google Scholar 

  • Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to hyacinthaceae. Bull Environ Contam Toxicol 79:371–376

    Article  CAS  PubMed  Google Scholar 

  • Stūrīte I, Henriksen TM, Breland TA (2005) Distinguishing between metabolically active and inactive roots by combined staining with 2,3,5-triphenyltetrazolium chloride and image colour analysis. Plant Soil 271:75–82

    Article  CAS  Google Scholar 

  • Tiwari M, Sharma NC, Fleischmann P, Burbage J, Venkatachalam P, Sahi SV (2017) Nanotitania exposure causes alterations in physiological, nutritional and stress responses in tomato (Solanum lycopersicum). Front Plant Sci 8:633

    Article  PubMed  PubMed Central  Google Scholar 

  • United States Environmental Protection Agency. Chemical Contaminants-CCL4 https://www.epa.gov/ccl/chemical-contaminants-ccl-4

  • Villegas M, Sommarin M, Brodelius PE (2000) Effects of sodium orthovanadate on benzophenanthridine alkaloid formation and distribution in cell suspension cultures of Eschscholtzia californica. Plant Physiol Biochem 38(3):233–241

    Article  CAS  Google Scholar 

  • Watt JAJ, Burke IT, Edwards RA, Malcolm HM, Mayes WM, Olszewska JP, Pan G, Graham MC, Heal KV, Rose NL, Turner SD, Spears BM (2018) Vanadium: a re-emerging environmental hazard. Environ Sci Technol 52:11973–11974

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Brandl H, Osterwalder S, Elzinga EJ, Huang JH (2019) Vanadium-basidiomycete fungi interaction and its impact on vanadium biogeochemistry. Environ Int 130:104891

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Teng YG, Wang JS, Li J (2011) Vanadium uptake by alfalfa grown in V-Cd-contaminated soil by pot experiment. Biol Trace Elem Res 142:787–795

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Wang M, Jia YB, Gou M, Zeyer J (2017) Toxicity of vanadium in soil on soybean at different growth stages. Environ Pollut 231:48–58

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Imtiaz M, Rizwan M, Dong X, Tu S (2020) Effect of vanadium on germination, growth and activities of amylase and antioxidant enzymes in genotypes of rice. Int J Environ Sci Technol 17:383–394

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Sichuan Science and Technology Program (2018HH0137).

Author information

Authors and Affiliations

Authors

Contributions

ZW is the main author. He collected all test data, performed statistical analyses, interpreted the results and drafted the manuscript. YZ gave the help in the section of results and discussions of the manuscript. JY gave a lot of help in the paper’s writing and was the leader of our team. CW mainly helped in paper discussion. YZ helped in element chemical states analyzing and paper discussion.

Corresponding authors

Correspondence to You-xian Zhang or Jin-yan Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Zz., Zhang, Yx., Yang, Jy. et al. Effect of Vanadium on Testa, Seed Germination, and Subsequent Seedling Growth of Alfalfa (Medicago sativa L.). J Plant Growth Regul 40, 1566–1578 (2021). https://doi.org/10.1007/s00344-020-10206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10206-0

Keywords

Navigation