Skip to main content
Log in

Assessment of the Germination Potential of Brassica oleracea Seeds Treated with Karrikin 1 and Cyanide, Which Modify the Ethylene Biosynthetic Pathway

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The relationship between ethylene and cyanide (HCN) and karrikin 1 (KAR1) in dormancy release was studied in secondary dormant Brassica oleracea L. (Chinese cabbage) seeds. Freshly harvested seeds of Brassica oleracea usually have poor germination potential. Karrikin1 (KAR1) and cyanide (HCN) are able to stimulate seed germination. However, the stimulatory effects of these two chemicals depend on the activation of the ethylene biosynthesis pathway and on ethylene perception. In this study, KAR1 and HCN application increased the activity of ethylene and of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). KAR1 and HCN collectively promoted the accumulation of 1 aminocyclopropane-1-carboxylic acid (ACC). In the presence of NO (nitric oxide) and KAR1, ACS and ACO activities reached their maximum levels after 36 and 42 h, respectively. Ethylene inhibitors suppressed seed germination by approximately 55%, whereas the respiratory inhibitors SHAM and NaN3 inhibited seed germination by 5–10% in the presence of HCN and KAR1. KAR1 and HCN collectively reduced the abscisic acid (ABA) content in seeds, increased the gibberellic acid (GA) content and released seed dormancy. The expression of ethylene biosynthesis genes and ethylene receptor genes (BOACO1, BOACS1, BOACS3, BOACS4, BOACS5, BOACS7, BOACS9, BOACS11, BOETR1 and BOETR2) provided further evidence of the involvement of ethylene in KAR1 and HCN-induced germination. BOACO1, BOACS1, BOACS5, BOACS7, BOACS9, BOACS11, BOETR1 and BOETR2 genes were up regulated in the presence of KAR1 and HCN, while the remaining genes were down regulated. The expression of various ethylene biosynthesis and ethylene receptor genes suggested functional diversification and variations in seed sensitivity in the presence of KAR1 and HCN. Therefore, in the current study, KAR1 and HCN application effectively induced the germination of B. oleracea seeds (approximately 97% germination rate) after 6 days by modifying the ethylene biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anzala F, Morere-Le Paven MC, Fournier S, Rondeau D, Limami AM (2006) Physiological and molecular aspects of aspartate-derived amino acid metabolism during germination and post-germination growth in two maize genotypes differing in germination efficiency. J Exp Bot 57(3):645–653

    CAS  PubMed  Google Scholar 

  • Awan S, Footitt S, Finch-Savage WE (2018) Interaction of maternal environment and allelic differences in seed vigour genes determines seed performance in Brassica oleracea. Plant J 94(6):1098–1108

    CAS  PubMed  Google Scholar 

  • Babula D, Misztal LH, Jakubowicz M, Kaczmarek M, Nowak W, Sadowski J (2006) Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues. Theoret Appl Genet 112(3):410–420

    CAS  Google Scholar 

  • Bethke PC, Libourel IG, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223(4):805–812

    CAS  PubMed  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bidonde S, Ferrer MA, Zegzouti H, Ramassamy S, Latché A, Pech JC, Hamilton AJ, Grierson D, Bouzayen M (1998) Expression and characterization of three tomato 1-aminocyclopropane-1-carboxylate oxidase cDNAs in yeast. Eur J Biochem 253(1):20–26

    CAS  PubMed  Google Scholar 

  • Binnie JE, McManus MT (2009) Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochemistry 70(3):348–360

    CAS  PubMed  Google Scholar 

  • Bogatek R, Lewak S (1988) Effects of cyanide and cold treatment on sugar catabolism in apple seeds during dormancy removal [Malus domestica]. Physiol Plant 73:406

    CAS  Google Scholar 

  • Bogatek R, Lewak S (1991) Cyanide controls enzymes involved in lipid and sugar catabolism in dormant apple embryos during culture. Physiol Plant 83(3):422–426

    CAS  Google Scholar 

  • Bogatek R (1995) The possible role of fructose 2, 6-bisphosphate in the cyanide- mediated removal of embryonic dormancy in apple. Physiol Plant 94(3):460–464

    CAS  Google Scholar 

  • Bogatek R, Côme D, Corbineau F, Picard MA, Żarska-Maciejewska B, Lewak S (1999) Sugar metabolism as related to the cyanide-mediated elimination of dormancy in apple embryos. Plant Physiol Biochem 37(7–8):577–585

    CAS  Google Scholar 

  • Bogatek R, Sykala A, Krysiak C (2004) Cyanide-induced ethylene biosynthesis in dormant apple embryos. Acta Physiol Plant 26(3 suppl.):16–16

    Google Scholar 

  • Booker MA, DeLong A (2015) Producing the ethylene signal: regulation and diversification of ethylene biosynthetic enzymes. Plant Physiol 169(1):42–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Cadman CS, Toorop PE, Hilhorst HW, Finch- Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J 46(5):805–822

    CAS  PubMed  Google Scholar 

  • Cembrowska-Lech D, Koprowski M, Kępczyński J (2015) Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. J Plant Physiol 176:169–179

    CAS  PubMed  Google Scholar 

  • Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95(6):901–915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concepcion M, Lizada C, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100(1):140–145

    Google Scholar 

  • Corbineau F, Xia Q, Bailly C, El-Maarouf-Bouteau H (2014) Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5:539

    PubMed  PubMed Central  Google Scholar 

  • Ebbs SD, Kosma DK, Nielson EH, Machingura M, Baker AJ, Woodrow IE (2010) Nitrogen supply and cyanide concentration influence the enrichment of nitrogen from cyanide in wheat (Triticum aestivum L.) and sorghum (Sorghum bicolor L.). Plant Cell Environ 33(7):1152–1160

    CAS  PubMed  Google Scholar 

  • Esashi Y, Kusuyama K, Tazaki S, Ishihara N (1981) Necessity of a balance between CN-sensitive and CN-resistant respirations for germination of cocklebur seeds. Plant Cell Physiol 22(1):65–71

    CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171(3):501–523

    CAS  PubMed  Google Scholar 

  • Feurtado JA, Kermode AR (2018) A merging of paths: abscisic acid and hormonal cross-talk in the control of seed dormancy maintenance and alleviation. Annu Plant Rev 27:176–223

    Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305(5686):977–977

    CAS  PubMed  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2009) Identification of alkyl substituted 2 H-furo [2, 3-c] pyran-2-ones as germination stimulants present in smoke. J Agric Food Chem 57(20):9475–9480

    CAS  PubMed  Google Scholar 

  • Flematti GR, Scaffidi A, Goddard-Borger ED, Heath CH, Nelson DC, Commander LE, Stick RV, Dixon KW, Smith SM, Ghisalberti EL (2010) Structure−activity relationship of karrikin germination stimulants. J Agric Food Chem 58(15):8612–8617

    CAS  PubMed  Google Scholar 

  • Gómez-Jiménez MDC, García-Olivares E, Matilla AJ (2001) 1-Aminocyclopropane-1 carboxylate oxidase from embryonic axes of germinating chick-pea (Cicer arietinum L.) seeds: cellular immunolocalization and alterations in its expression by indole-3-acetic acid, abscisic acid and spermine. Seed Sci Res 11(3):243–253

    Google Scholar 

  • Gniazdowska A, Krasuska U, Bogatek R (2010a) Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232(6):1397–1407

    CAS  PubMed  Google Scholar 

  • Gniazdowska A, Krasuska U, Czajkowska K, Bogatek R (2010b) Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul 61(1):75–84

    CAS  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14(4):817–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilhorst HWM, Bradford K, Nonogaki H (2007) Seed development, dormancy and germination. Wiley, New York

    Google Scholar 

  • Huang S, Gruber S, Stockmann F, Claupein W (2016) Dynamics of dormancy during seed development of oilseed rape (Brassica napus L.). Seed Sci Res 26(3):245–253

    CAS  Google Scholar 

  • International Seed Testing Association (1999) International rules for seed testing. Rules 1999. Seed Science and Technology. CABI, Wallingford

    Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11(5):479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kepczynski J, Corbineau F, Côme D (1996) Responsiveness of Amaranthus retroflexus seeds to ethephon, 1-aminocyclopropane 1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Regul 20(3):259–265

    CAS  Google Scholar 

  • KeÇpczyński J, KeÇpczyńska E (1997) Ethylene in seed dormancy and germination. Physiol Plant 101(4):720–726

    Google Scholar 

  • Kępczyński J, Van Staden J (2012) Interaction of karrikinolide and ethylene in controlling germination of dormant Avena fatua L. caryopses. Plant Growth Regul 67(2):185–190

    Google Scholar 

  • Kępczyński J, Cembrowska-Lech D, Van Staden J (2013) Necessity of gibberellin for stimulatory effect of KAR 1 on germination of dormant Avena fatua L. caryopses. Acta Physiol Plant 35(2):379–387

    Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(4):281–307

    CAS  Google Scholar 

  • Kuyucak N, Akcil A (2013) Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng 50:13–29

    Google Scholar 

  • Locke JM, Bryce JH, Morris PC (2000) Contrasting effects of ethylene perception and biosynthesis inhibitors on germination and seedling growth of barley (Hordeum vulgare L.). J Exp Bot 51(352):1843–1849

    CAS  PubMed  Google Scholar 

  • Mathooko FM, Kubo Y, Inaba A, Nakamura R (1993) Partial characterization of 1-aminocyclopropane-1-carboxylate oxidase from excised mesocarp tissue of winter squash [Cucurbita moschata] fruit. Scientific Reports of the Faculty of Agriculture-Okayama University (Japan)

  • Matilla AJ (2000) Ethylene in seed formation and germination. Seed Sci Res 10(2):111–126

    CAS  Google Scholar 

  • Matilla AJ, Matilla-Vázquez MA (2008) Involvement of ethylene in seed physiology. Plant Sci 175(1–2):87–97

    CAS  Google Scholar 

  • McMahon Smith J, Arteca RN (2000) Molecular control of ethylene production by cyanide in Arabidopsis thaliana. Physiol Plant 109(2):180–187

    Google Scholar 

  • Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagashima S (1977) Spectrophotometric determination of cyanide with γ-picoline and barbituric acid. Anal Chim Acta 91(2):303–306

    CAS  Google Scholar 

  • Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiol 149(2):863–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M, Job C, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465

    CAS  PubMed  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Bogatek R, Corbineau F, Bailly C (2008) Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway. J Exp Bot 59(8):2241–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150(1):494–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peck SC, Kende H (1995) Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas. Plant Mol Biol 28(2):293–301

    CAS  PubMed  Google Scholar 

  • Pierik R, Sasidharan R, Voesenek LA (2007) Growth control by ethylene: adjusting phenotypes to the environment. J Plant Growth Regul 26(2):188–200

    CAS  Google Scholar 

  • Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, Latche A, Pech JC, Bouzayen M (2006) Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol 47(9):1195–1205

    CAS  PubMed  Google Scholar 

  • Rahman MM, Banu LA, Rahman MM, Shahjadee UF (2007) Changes of the enzymes activity during germination of different mungbean varieties. Bangl J Sci Ind Res 42(2):213–216

    CAS  Google Scholar 

  • Renata B, Agnieszka G (2006) Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiol Plant 28(3):281–287

    CAS  Google Scholar 

  • Riov J, Yang SF (1982) Effects of exogenous ethylene on ethylene production in citrus leaf tissue. Plant Physiol 70(1):136–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruduś I, Cembrowska-Lech D, Jaworska A, Kępczyński J (2018) Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR 1 or GA 3. Planta 1:1–20

    Google Scholar 

  • Sami A, Riaz MW, Zhou X, Zhu Z, Zhou K (2019) Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC Plant Biol 19(1):1–15

    Google Scholar 

  • Sami A, Shah FA, Abdullah M, Yu ZX, Yan Y, He ZZ, Jin ZK (2020) Melatonin mitigates cadmium and aluminum toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol. https://doi.org/10.1111/plb.13093

    Article  PubMed  Google Scholar 

  • Shuai H, Meng Y, Luo X, Chen F, Zhou W, Dai Y, Qi Y, Du J, Yang F, Liu J, Yang W (2017) Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep 7(1):1–11

    Google Scholar 

  • Schierle J, Rohwer F, Bopp M (1989) Distribution of ethylene synthesis along the etiolated pea shoot and its regulation by ethylene. J Plant Physiol 134(3):331–337

    CAS  Google Scholar 

  • Siegień I, Bogatek R (2006) Cyanide action in plants—from toxic to regulatory. Acta Physiol Plant 28(5):483–497

    Google Scholar 

  • Tonguc M, Elkoyunu R, Erbaş S, Karakurt Y (2012) Changes in seed reserve composition during germination and initial seedling development of safflower (Carthamus tinctorius L.). Turk J Biol 36(1):107–112

    CAS  Google Scholar 

  • Van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. S Afr J Bot. https://doi.org/10.1016/S0254-6299(15)30206-4

    Article  Google Scholar 

  • Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of Arabidopsis. Plant J 79(4):623–631

    CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35(1):155–189

    CAS  Google Scholar 

  • Yip WK, Yang SF (1988) Cyanide metabolism in relation to ethylene production in plant tissues. Plant Physiol 88(2):473–476

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was financially supported by the 13th Five-Year Plan for Rapeseed-Cotton Industry System of Anhui Province in China (AHCYJSTX-04) and the National Key Research & Development Program (2018YFD0100600).

Author information

Authors and Affiliations

Authors

Contributions

AS designed and performed the experiment. SR, AT and ZXY analyzed the data. ZZH and ZKJ provided the guidance during all experiments. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Kejin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest that might be perceived to influence the results and discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sami, A., Rehman, S., Tanvir, M.A. et al. Assessment of the Germination Potential of Brassica oleracea Seeds Treated with Karrikin 1 and Cyanide, Which Modify the Ethylene Biosynthetic Pathway. J Plant Growth Regul 40, 1257–1269 (2021). https://doi.org/10.1007/s00344-020-10186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10186-1

Keywords

Navigation