Skip to main content

Advertisement

Log in

Ameliorative Impact of an Extract of the Halophyte Arthrocnemum macrostachyum on Growth and Biochemical Parameters of Soybean Under Salinity Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A pot experiment was carried out to study the ameliorative role of foliar application of an extract of the halophyte Arthrocnemum macrostachyum (A. macrostachyum) on soybean (Glycin max L.) plants grown under salinity stress (0, 75, and 150 mM NaCl). Growth traits, content of photosynthetic pigments, osmolytes, ascorbic acid and total phenol, oxidative damage, and proteins pattern were determined. Growth parameters of soybean plants grown under both saline regimes (75 and 150 mM NaCl) were reduced except for the response to the foliar application of A. macrostachyum extract in either stressed or non-stressed plants. Foliar application of A. macrostachyum extract reinforced the photosynthetic pigment, soluble sugars, and soluble proteins content. Besides, it also minimized the negative impacts of salinity on soybean plants by decreasing the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2). The results herein showed that the plant water extract and their interactions in the two NaCl levels increased the proline, total free amino acids, total phenols, and ascorbic acid content. Protein patterns in soybean leaves indicated protein expression suppression in soybean plants irrigated with 150 mM NaCl. The magnitude of suppression caused by the saline level was enhanced by using A. macrostachyum extract. The findings of this study indicate that the use of an extract of the halophyte A. macrostachyum can be considered as an unconventional and novel tool in the mitigation of salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. S Afr J Bot 103:275–282

    CAS  Google Scholar 

  • Abdel Latef AA (2011) Ameliorative effect of calcium chloride on growth, antioxidant enzymes, protein patterns and some metabolic activities of canola (Brassica napus L.) under seawater stress. J Plant Nutr 34(9):1303–1320

    CAS  Google Scholar 

  • Abdel Latef AA, Jan S, Abd-Allah EF, Rashid B, John R, Ahmad P (2015) Soybean under abiotic stress: proteomic approach. In: Mohamed MA, Parvaiz A (eds) Plant-environment interaction: responses and approaches to mitigate stress, 1st edn. Wiley, New York, pp 28–42

    Google Scholar 

  • Abdel Latef AA, Abu Alhmad MF, Abdelfattah KE (2017a) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in Lupine (Lupinus termis) plants. J Plant Growth Regul 36:60–70

    CAS  Google Scholar 

  • Abdel Latef AA, Abu Alhmad MF, Hammad SA (2017b) Foliar application of fresh moringa leaf extract overcomes salt stress in fenugreek (Trigonellafoenum-graecum) plants. Egypt J Bot 57(1):157–179

    Google Scholar 

  • Abdel Latef AA, Srivastava AK, Saber H, Alwaleed EA, Tran LSP (2017c) Sargassum muticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci Rep 7:10537

    PubMed  PubMed Central  Google Scholar 

  • Abdel Latef AA, Srivastava AK, Abdel-sadek MS, Kordrostam M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline conditions. Land Degrad Dev 29:1065–1073

    Google Scholar 

  • Abdel Latef AA, Kordrostam M, Zakir A, Zaki H, Saleh OM (2019a) Eustress with H2O2 facilitates plant growth by improving tolerance to salt stress in two wheat cultivars. Plants 8(9):303

    PubMed Central  Google Scholar 

  • Abdel Latef AA, Mostofa MG, Rahman MM, Abdel-Farid IB, Tran LSP (2019b) Extracts from yeast and carrot roots enhance maize performance under seawater-induced salt stress by altering physio-biochemical characteristics of stressed plants. J Plant Growth Regul 38:966–979

    CAS  Google Scholar 

  • Abdel Latef AA, Abu Alhmad MF, Kordrostami M, Abo-Baker AE, Zakir A (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10065-9

    Article  Google Scholar 

  • Abdel-Hafeez AA, Abd El-Mageed TA, Rady MM (2019) Impact of ascorbic acid foliar spray and seed treatment with cyanobacteria on growth and yield component of sunflower plants under saline soil conditions. Intern Lett Nat Sci 76:136–146

    Google Scholar 

  • Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci 7:2035

    PubMed  PubMed Central  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplast, scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Mol Biol 50:601–639

    CAS  Google Scholar 

  • Atzori G, de Vos AC, van Rijsselberghe M, Vignolini P, Rozema J, Mancuso S, van Bodegom PM (2017) Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agric Water Manag 187:37–46

    Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    CAS  PubMed  Google Scholar 

  • Boulos L (1999) Flora of Egypt. Vol. 1 (Azollaceae—Oxalidaceae). Ahadara Publishing, Cairo, p 419

    Google Scholar 

  • Carillo P, Cirillo C, De Micco V, Arena C, De Pascale S, Rouphael Y (2019) Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes. Agric Water Manag 212:12–22

    Google Scholar 

  • Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hort 127:147–155

    Google Scholar 

  • Chavoushi M, Kalantari KM, Arvin MJ (2019) Effect of salinity stress and exogenously applied methyl jasmonate on growth and physiological traits of two Carthamus tinctorius varieties. Intern J Horti Sci Technol 6(1):39–49

    CAS  Google Scholar 

  • Chung YS, Kim K-S, Hamayun M, Kim Y (2020) Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front Plant Sci 10:1725. https://doi.org/10.3389/fpls.2019.01725

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai GH, Andary C, Cosson-Monodol L, Boubals D (1994) Polyphenols and resistance of grapevines to downy mildew. Acta Horti 381:763–766

    CAS  Google Scholar 

  • Daneshmand F, Arvin M, Kalantari K (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101

    CAS  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biol Colomb 20(2):223–235

    Google Scholar 

  • El-Afry MM, El-Okkiah SAF, El-Kady EAF, El-Yamanee GSA (2018) Exogenous application of ascorbic acid for alleviation the adverse effects of salinity stress in flax (Linum usitatissimum L.). Mid East J Agric Res 7(3):716–739

    Google Scholar 

  • El-Shourbagy MN, Saad-Allah KM, Foda SA, Razzaky EO (2017) Impact of some halophytic extracts on the antioxidant system of salt-stressed safflower (Carthamus tinctorius L.). J Plant Prod Mans Univ 8(7):759–765

    Google Scholar 

  • El-zeiny HA, Abou Leila B, Gaballah MS, Khalil S (2007) Antitranspirant application to sesame plant for salinity stress augmentation. Res J Agric Biol Sci 3(6):950–959

    CAS  Google Scholar 

  • Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148

    PubMed  PubMed Central  Google Scholar 

  • Ewais EA, Ismail MA, Badawy AA (2017) Vegetative growth, photosynthetic pigments and yield of Phaseolus vulgaris (L.) plants in response to the application of biologically-synthesized zinc oxide nanoparticles and zinc sulphate. Al Azhar Bull Sci 9:33–46

    Google Scholar 

  • Flowers TJ (1985) Physiology of halophytes. Plant Soil 89:41–56

    CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604

    Google Scholar 

  • Fried HG, Narayanan S, Fallen B (2019) Evaluation of soybean [Glycine max (L.) Merr.] genotypes for yield water use efficiency and root traits. PLoS ONE 14(2):e0212700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gago C, Sousa AR, Juliao M, Miguel G, Antunes DC, Panagopoulos T (2011) Sustainable use of energy in the storage of halophytes used for food. Int J Energy Environ 5:592–599

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gururani MA, Venkatesh J, Tran LS (2015) Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant 8:1304–1320

    CAS  PubMed  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    CAS  PubMed  Google Scholar 

  • Hassanein RA, Bassouny FM, Barakat DM, Khalil RR (2009) Physiological effects of nicotinamide and ascorbic acid on Zea mays plant grown under salinity stress. Changes in growth, some relevant metabolic activities and oxidative defense systems. Res J Agric Biol Sci 5(1):72–81

    CAS  Google Scholar 

  • Hernández JA (2019) Salinity tolerance in plants: trends and perspectives. Int J Mol Sci 20:2408

    PubMed Central  Google Scholar 

  • Hussein MM, Alva AK (2014) Effects of zinc and ascorbic acid application on the growth and photosynthetic pigments of millet plants grown under different salinity. Agric Sci 5:1253–1260

    Google Scholar 

  • Hussein HA, Mekki BB, Abd El-Sadek ME, Ebd El Lateef E (2019) Effect of L-Ornithine application on improving drought tolerance in sugar beet plants. Heliyon 5:e02631

    PubMed  PubMed Central  Google Scholar 

  • Ibrahim WM, Ali RM, Hemida KA, Sayed MA (2014) Role of Ulva lactuca extract in alleviation of salinity stress on wheat seedlings. The Sci World J 2014:11

    Google Scholar 

  • Jagota SK, Dani HMA (1982) New colorimetric technique for the estimation of vitamin C using folin phenol reagent. Analyt Biochem 127:178–182

    CAS  PubMed  Google Scholar 

  • Jayaraman J (1985) Postharvest biological control. Wiley, Eastern

    Google Scholar 

  • Jitan SA, AlKhoori S, Ochsenkühn M, Amin SA, Yousef LF (2018) Ethanol/water extracts from halophyte species Arthrocnemum macrostachyum and Tetraena qatarensis. Cogent Chem 4:1536311

    Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defense. J Gen 85:237–254

    CAS  Google Scholar 

  • Jonathan FW, Weeden NF (1990) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Chapman and Hall, London, pp 5–45

    Google Scholar 

  • Jouyban Z (2012) The effects of salt stress on plant growth. Technol J Eng Appl Sci 2(1):7–10

    CAS  Google Scholar 

  • Kasim WA, Saad-Allah KM, Hamouda M (2016) Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int J Agric Biol 18:653–660

    Google Scholar 

  • Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants. Springer, Berlin, p 108

    Google Scholar 

  • Khan TA, Mazid M, Mohammad F (2011) A review of ascorbic acid potentialities against oxidative stress induced in plants. J Agrobiol 28(2):97–111

    Google Scholar 

  • Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091

    CAS  PubMed  Google Scholar 

  • Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I et al (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32:289–326

    CAS  PubMed  Google Scholar 

  • Kulbat K (2016) The role of phenolic compounds in plants resistance. Biotechnol Food Sci 80:97–108

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lovelock CE, Ball MC (2002) Influence of salinity on photosynthesis of halophytes. In: Läuchli A, Lüttge U (eds) Salinity: environment-plants-molecules. Springer, Netherlands, pp 315–339

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the folin reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Navarro-Torre S, Mateos-Naranjo E, Caviedes MA, Pajuelo E, Rodríguez-Llorente ID (2016) Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from Arthrocnemum macrostachyum in the Odiel marshes with potential use in phytoremediation. Mar Poll Bull 110(1):133–142

    CAS  Google Scholar 

  • Radi AA, Farghaly FA, Hamada AM (2013) Physiological and biochemical responses of salt-tolerant and salt-sensitive wheat and bean cultivars to salinity. J Biol Earth Sci 3(1):72–88

    Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Andrades- Moreno L (2010) Accumulation and tolerance characteristics of cadmium in a halophytic Cd hyperaccumulator, Arthrocnemum macrostachyum. J Hazard Mater 184:299–307

    PubMed  Google Scholar 

  • Rozema J, Van Diggelen J (1991) A comparative study of growth and photosynthesis of four halophytes in response to salinity. Acta Oecol 12:673–681

    Google Scholar 

  • Rozema J, Muscolo A, Flowers T (2013) Sustainable cultivation and exploitation of halophyte crops in a salinizing world. Environ Exp Bot 92:1–3

    Google Scholar 

  • Rouphael Y, Cardarelli M, Rea E, Colla G (2012) Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica 50:180–182

    CAS  Google Scholar 

  • Sadak MSH, Rady MM, Badr NM, Gaballah MS (2010) Increasing sunflower salt tolerance using nicotinamide and α-tocopherol. Int J Acad Res 2(4):263–270

    Google Scholar 

  • Sadak MSH, Abd El-Hameid AR, Zaki FSA, Dawood MG, El-Awadi ME (2020) Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bull Nat Res Centre 44:1

    Google Scholar 

  • Salma L, Aymen EM, Maher S, Hassen A, Chérif H, Halima C, Mimoun E (2014) Effect of seaweed extract of Sargassum vulgare on germination behavior of two bean cultivars (Phaseolus vulgaris L) under salt stress. IOSR J Agr Vet Sci 7:116–120

  • Sayyari M, Ghanbari F, Fathhi S, Bavandpour F (2013) Chilling tolerance improving of water melon seedling by salicylic acid seed and foliar application. Not Sci Biol 51:67–73

    Google Scholar 

  • Selem EE (2019) Physiological effects of Spirulina platensis in salt stressed Vicia faba L. plants. Egypt J Bot 59(1):185–194

    Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    CAS  PubMed  Google Scholar 

  • Shalata A, Neumann P (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211

    CAS  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Lowa State University Press, Lowa, pp 350–358

  • Sofowora A (1982) Medicinal plants and traditional medicine in Africa. Wiley, Chichester, p 179

    Google Scholar 

  • Studier FW (1973) Analysis of Bacteriophage T4 early RNAs and proteins of slab gel. J Mol Biol 79:237–248

    CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Täckholm V (1974) Students’ Flora of Egypt, 2nd edn. Cairo University, Cairo, p 888

    Google Scholar 

  • Taïbi K, Taïbi F, Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306–312

    Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK (2009) Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Planta 32(1):103–114

    Google Scholar 

  • Tomar NS, Agarwal RM (2013) Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Amer J Plant Sci 4:1134–1150

    Google Scholar 

  • Tomar NS, Sharma M, Agarwal RM (2015) Phytochemical analysis of Jatropha curcas L. during different seasons and developmental stages and seedling growth of wheat (Triticum aestivum L.) as affected by extracts/leachates of Jatropha curcas L. Physiol Mol Biol Plants 21:83–92

    CAS  PubMed  Google Scholar 

  • Umbriet WW, Burris RH, Stauffer JF, Cohen PP, Johsen WJ, Leepage GA, Patter VR, Schneicter WC (1969) Manometric techniques, manual describing methods applicable to the studs of tissue metabolism. Burgess Publishing Company, Plano, p 239

    Google Scholar 

  • Vernon LP, Selly GR (1966) The chlorophylls. Academic press, New York and London

    Google Scholar 

  • Wael SE, Abdellah A, Moustafa YE, Medhat E (2014) In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Front Microbiol 5(651):1–11

    Google Scholar 

  • Xu YB, Pausch RC, Vonhof WM, Coburn JR, Comstock JP, McCouch SR (2009) Leaf-level water use efficiency determined by carbon isotope discrimination in rice seedlings: genetic variation associated with population structure and QTL mapping. Theor App Genet J 118:1065–1081

    CAS  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadavi A, Aboueshaghi RS, Dehnavi MM, Balouchi H (2014) Effect of micronutrients foliar application on grain qualitative characteristics and some physiological traits of bean (Phaseolus vulgaris L.) under drought stress. Ind J Fund App Life Sci 4(4):124–131

    Google Scholar 

  • Zhang ZL, Qu W (2004) experimental guidance of plant physiology. High Education, Beijing

    Google Scholar 

  • Zhang M, Fang Y, Ji Y, Jiang Z, Wang L (2013) Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. S Afr J Bot 85:1–9

    Google Scholar 

  • Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE 9(11):e112807

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Al-Baraa El-Saied, Lecturer of Plant Ecology, Botany and Microbiology Department, Faculty of Science, Al-Azhar University for his effort in collection and identification of halophytic plant for this work. The authors also would like to thank Dr. Kevin Morgan for helping in the language editing of the manuscript. The authors would like to thank also Charlie Farrell and Patrick McNicholl who assisted in the reading of the revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafat Abdel Hamed Abdel Latef.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osman, M.S., Badawy, A.A., Osman, A.I. et al. Ameliorative Impact of an Extract of the Halophyte Arthrocnemum macrostachyum on Growth and Biochemical Parameters of Soybean Under Salinity Stress. J Plant Growth Regul 40, 1245–1256 (2021). https://doi.org/10.1007/s00344-020-10185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10185-2

Keywords

Navigation