Skip to main content
Log in

Over-Expression of a Transcription Factor Gene BoC3H4 Enhances Salt Stress Tolerance but Reduces Sclerotinia Stem Rot Disease Resistance in Broccoli

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

C3H-type zinc finger genes play diverse roles in plant growth, development, and stress responses. In our present study, a C3H-type gene namely BoC3H4 was isolated from broccoli. BoC3H4 was 1629 bp in length encoding 542 amino acid residues. The deduced protein sequence contained two ankyrin repeats and two CCCH zinc finger motifs, and those motifs shared high identities with homologous sequences from other Cruciferae plants. The expression levels of BoC3H4 elevated when subjected to both salt stress and Sclerotinia sclerotiorum infection. Broccoli plants with constitutive expression of BoC3H4 demonstrated increased tolerance toward salinity stress, accompanied by a prominent accumulation of proline, and a remarkable decrease of chlorophyll loss, MDA, REC, as well as H2O2 accumulation compared to WT plants. Moreover, over-expression of BoC3H4 in broccoli lines decreased resistance to S. sclerotiorum, and it could not induce the expression of BoPDF1.2 gene, the marker gene for JA/ET signaling pathway. Our study proposes that BoC3H4 acts as a positive regulator of plant tolerance to salinity stress and a negative regulator of resistance to necrotrophic pathogen S. sclerotiorum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SA:

Salicylic acid

ET:

Ethylene

MeJA:

Methyl jasmonate

ABA:

Abscisic acid

MDA:

Malonyldialdehyde

NJ:

Neighbor-joining

REC:

Relative electrical conductivity

qRT-PCR:

Quantitative real-time polymerase chain reaction

WT:

Wild-type

CTAB:

Cetyltrimethylammonium bromide

NBT:

Nitroblue tetrazolium

DAB:

3,3′-Diaminobenzidine

PR:

Pathogenesis related

TF:

Transcription factors

ZF:

Zinc finger

ROS:

Reactive oxygen species

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmadi MR, Javan-Nik-Khah M, Aghajani MA, Ghobakhloo M (2012) Morphological variability among Sclerotinia sclerotiorum populations associated with stem rot of important crops and weeds. World Appl Sci J 20:1561–1564

    CAS  Google Scholar 

  • Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y (2010) Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 18:132–139

    CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Apostolova P, Yordanova R, Popova L (2008) Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen Appl Plant Physiol 34:281–294

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    CAS  Google Scholar 

  • Bogamuwa S, Jang JC (2013) The Arabidopsis tandem CCCH zinc finger proteins AtTZF4, 5 and 6 are involved in light-, abscisic acid- and gibberellic acid-mediated regulation of seed germination. Plant, Cell Environ 36:1507–1519

    CAS  Google Scholar 

  • Bogamuwa SP, Jang JC (2014) Tandem CCCH zinc finger proteins in plant growth, development and stress response. Plant Cell Physiol 55:1367–1375

    CAS  PubMed  Google Scholar 

  • Boland GJ, Webster SJ, Walker L (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Google Scholar 

  • Bueno EA, Oliveira MB, Andrade RV, Lobo M Jr, Petrofeza S (2012) Effect of different carbon sources on proteases secreted by the fungal pathogen Sclerotinia sclerotiorum during Phaseolus vulgaris infection. Genet Mol Res 11:2171–2181

    CAS  PubMed  Google Scholar 

  • Castro LH, Figueiró AA, Nogueira AP, Clough SJ, Juliatti FC (2016) Resistance of soybean genotypes to Sclerotinia sclerotiorum isolates in different incubation environments. Genet Mol Res 15:gmr15049061

    Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson JP, Fawcett L, Anthony SG (2014) A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS ONE 9:e94049

    PubMed  PubMed Central  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    PubMed  Google Scholar 

  • Deng H, Liu H, Li X, Xiao J, Wang S (2012) A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiol 158:876–889

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duan Y, Jiang Y, Ye S, Karim A, Ling Z, He Y, Yang S, Luo K (2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Plant Cell Rep 34:831–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci USA 111(6):2367–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZJ, Chen XJ, Wu XL, Ling JQ, Xu P (2004) Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco. Plant Mol Biol 55:607–618

    CAS  PubMed  Google Scholar 

  • Guo YH, Yu YP, Wang D, Wu CA, Yang GD, Huang JG, Zheng CC (2009) GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol 183:62–75

    CAS  PubMed  Google Scholar 

  • Hassen A, Maher S, Cherif H (2014) Effect of salt stress (NaCl) on germination and early seedling parameters of three pepper cultivars (Capsicum annuum L.). J Stress Physiol Biochem 10:10–25

    Google Scholar 

  • Hopper NW, Overholt JR, Martin JR (1979) Effect of cultivar, temperature and seed size on the germination and emergence of soya beans (Glycine max (L.) Merr.). Ann Bot 44:301–308

    Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS ONE 8:e62085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Progr 27:297–306

    CAS  Google Scholar 

  • Hwang JH, Lim SB (2015) Antioxidant and anticancer activities of broccoli by-products from different cultivars and maturity stages at harvest. Prev Nutr Food Sci 20:8–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161:1202–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Miao LX, He CM (2012) Overexpression of an oil radish superoxide dismutase gene in broccoli confers resistance to downy mildew. Plant Mol Biol Rep 30:966–972

    CAS  Google Scholar 

  • Jiang M, Jiang JJ, Miao LX, He CM (2017) Over-expression of a C3H-type zinc finger gene contributes to salt stress tolerance in transgenic broccoli plants. Plant Cell Tissue Org 130(2):239–254

    CAS  Google Scholar 

  • Kuhlmann F, Müller C (2009) Independent responses to ultraviolet radiation and herbivore attack in broccoli. J Exp Bot 60:3467–3475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2015) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21:279–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38:1049–1063

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2014) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-protocol 4:e1108

    Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    CAS  PubMed  Google Scholar 

  • Li J, Mahajan A, Tsai MD (2006) Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry 45:15168–15178

    CAS  PubMed  Google Scholar 

  • Lim CW, Baek W, Lim S, Han SW, Lee SC (2015) Expression and functional roles of the pepper pathogen-induced bZIP transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Mol Plant Microbe Interact 28:825–833

    CAS  PubMed  Google Scholar 

  • Liu B, Ouyang Z, Zhang Y, Li X, Hong Y, Huang L, Liu S, Zhang H, Li D, Song F (2014a) Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE 9:e102067

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Khan MR, Li Y, Zhang J, Hu C (2014b) Comprehensive analysis of CCCH-type zinc finger gene family in citrus (Clementine mandarin) by genome-wide characterization. Mol Genet Genomics 289:855–872

    CAS  PubMed  Google Scholar 

  • Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TG (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mahn A, Reyes A (2012) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Technol Int 18:503–514

    PubMed  Google Scholar 

  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    PubMed  PubMed Central  Google Scholar 

  • Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B (2012) CCCH-Type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS ONE 7:e40120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pogany M, von Rad U, Grun S, Dongo A, Pintye A, Simoneau P, Bahnweg G, Kiss L, Barna B, Durner J (2009) Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiol 151:1459–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Kant C, Verma S, Bhatia S (2017) Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.). PLoS ONE 12:e0180469

    PubMed  PubMed Central  Google Scholar 

  • Qiu A, Lei Y, Yang S, Wu J, Li J, Bao B, Cai Y, Wang S, Lin J, Wang Y, Shen L, Cai J, Guan D, He S (2018) CaC3H14 encoding a tandem CCCH zinc finger protein is directly targeted by CaWRKY40 and positively regulates the response of pepper to inoculation by Ralstonia solanacearum. Mol Plant Pathol 19:2221–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MU, Kayani SA, Shereen G (2000) Combined effects of temperature and salinity stress on corn cv. sunahry. Pak J Biol Sci 3:1459–1463

    Google Scholar 

  • Ramachandran S, Hiratsuka K, Chua NH (1994) Transcription factors in plant growth and development. Curr Opin Genet Dev 4:642–646

    CAS  PubMed  Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2004) Hyperhydricity in micropropaged carnation shoots: the role of oxidative stress. Physiol Planta 120:152–161

    CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Saito H, Masuda S, Shirasu K, Ohta H (2014) Comprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling. Plant Signal Behav 9:e27639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51:121–124

    Google Scholar 

  • Shahbaz M, Ashraf M, Akram NA, Hanif A, Hameed S, Joham S, Rehman R (2011) Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiol Plant 33:1113–1122

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947

    CAS  PubMed  Google Scholar 

  • Uloth MB, Clode PL, You MP, Barbetti MJ (2016) Attack modes and defence reactions in pathosystems involving Sclerotinia sclerotiorum, Brassica carinata, B. juncea and B. napus. Ann Bot 117:79–95

    PubMed  Google Scholar 

  • Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114

    Google Scholar 

  • Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genomics 9:44

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang Y, Sun J, Ding M, Deng S, Hou P, Ma X, Zhang Y, Wang F, Sa G, Tan Y, Lang T, Li J, Shen X, Chen S (2013) Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis. Plant Physiol Biochem 71:37–48

    CAS  PubMed  Google Scholar 

  • Wang W, Liu B, Xu M, Jamil M, Wang G (2015) ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochem Biophys Res Commun 464:33–37

    CAS  PubMed  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67

    PubMed  PubMed Central  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  • Xu R (2014) Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Solanum lycopersicum. Mol Genet Genomics 289:965–979

    CAS  PubMed  Google Scholar 

  • Zabaras D, Roohani M, Krishnamurthy R, Cochet M, Delahunty CM (2013) Characterisation of taste-active extracts from raw Brassica oleracea vegetables. Food Funct 4:592–601

    CAS  PubMed  Google Scholar 

  • Zhang C, Zhang H, Zhao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2013) Genome-wide analysis of the CCCH zinc finger gene family in Medicago truncatula. Plant Cell Rep 32:1543–1555

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Taizhou Science and Technology Project (1901ny08), Science Foundation for Distinguished Young Scholars of Taizhou University (2017JQ001), and Zhejiang Provincial Natural Science Foundation of China (LY19C150004).

Author information

Authors and Affiliations

Authors

Contributions

MJ and LM conceived and designed the work. MJ, HZ, LM, and XZ performed the experiments. MJ analyzed the data and wrote the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Ming Jiang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Miao, L., Zhang, H. et al. Over-Expression of a Transcription Factor Gene BoC3H4 Enhances Salt Stress Tolerance but Reduces Sclerotinia Stem Rot Disease Resistance in Broccoli. J Plant Growth Regul 39, 1162–1176 (2020). https://doi.org/10.1007/s00344-019-10054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10054-7

Keywords

Navigation