Skip to main content
Log in

Transcriptome Characterization of Gene Profiling During Early Stage of Nitric Oxide-Induced Adventitious Rooting in Mung Bean Seedlings

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) functions as a signaling molecule modulating diverse developmental and physiological processes in plants. NO was recently shown to strongly induce the formation of adventitious roots in plants. A transcriptome analysis was performed using RNA-Seq and qRT-PCR technologies to obtain further insights into the gene expression profile underlying NO-induced adventitious rooting. Sodium nitroprusside (SNP), a widely used NO donor, significantly up-regulated the GO terms and pathways oxidoreductase activity, wounding response, water deprivation response, microtubule-based process, cell cycle, cell wall synthesis, photosynthesis, hydrolase activity at the root induction stage, response to stress, cell wall loosening and biogenesis, ethylene signaling at the root initiation stage. In total, 2582 and 2588 differentially expressed genes (DEGs, fold change ≥ 2) were selected in plants receiving the 6- and 24-h SNP treatments, respectively. The analysis of the most highly differentially expressed genes (RPKM ≥ 10 and fold change ≥ 2) shows that NO significantly regulated the expression of genes involved in nitrogen compound response, stress response, oxidative stress response, cell wall modification, signal transduction, protein processing, secondary metabolism, metabolic processes, and transcription factors (TFs), as well as plant hormone signaling. Notably, the expression of a large number of genes encoding peroxidase (POD) isoforms was significantly differentially regulated by SNP. Furthermore, qRT-PCR results indicated that NO significantly up-regulated the expression of several genes with known functions in pathways such as auxin signaling and stress response, as well as TF genes, at the root induction and initiation stages. The evidence obtained implies that NO up-regulated the expression of genes that are involved in the key cellular processes leading to the root formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The unigene sequence information of this article is available in the Transcriptome Shotgun Assembly Sequence Database (http://www.ncbi.nih. gov/genbank/tsa.html) at DDBJ/EMBL/GenBank under the sequence read archive SRR 1653637 and the accession numbers GBXO01000001-GBXO01078617. The datasets supporting the conclusions of this article are included within the article and its additional files.

Abbreviations

ABA:

ABSCISIC ACID

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

1-Aminocyclopropane-1-carboxylic acid oxidase

ACS:

1-Aminocyclopropane-1-carboxylic acid synthase

AHK:

Arabidopsis histidine kinase

AOX:

Alternative oxidase

AP2/ERF:

Apetala2/Ethylene response factor

APX:

Ascorbate peroxidase

ARF:

Auxin response factor

AUX1/LAX:

Auxin/IAA

BR:

Brassinosteroid

BRI1:

Brassinosteroid insensitive 1

BAK1:

Brassinosteroid insensitive 1-associated receptor kinase 1-like

bHLH:

Basic/helix-loop-helix

bZIP:

Basic leucine zipper

CASPL:

Casparian strip membrane protein-like

CAT:

Catalase

cGMP:

Cyclic guanosine monophosphate

CHS:

Chalcone synthase

DEGs:

Differentially expressed genes

DHAR:

DHA reductase

Dof:

Dof zinc finger protein

EBF1:

EIN3-binding F-box protein 1-like

EIN:

Ethylene-insensitive protein

ETO:

Ethylene-overproduction protein

GA2/3OX2:

Gibberellin 2/3-beta-dioxygenase

GA2/20OX:

Gibberellins 2/20 oxidase

GATA:

GATA transcription factor

GH:

Glycoside hydrolase

GH3:

Gretchen hagen 3

GO:

Gene ontology

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GST:

Glutathione S-transferase

HD-Zip:

Homeobox-leucine zipper protein

HSPs:

Heat shock proteins

HSFs:

Heat shock transcription factors

IBA:

Indole-3-butyric acid

KAAS:

Automatic annotation server

KEGG:

Kyoto encyclopedia of genes and genomes

KOG:

Clusters of orthologous groups for eukaryotic complete genomes

LBD:

Lateral organ boundaries-domain

LEA:

Late embryogenesis abundant

LOB:

Lateral organ boundaries

LRR:

Leucine-rich repeat

MAPK:

Mitogen-activated protein kinase

MDAR:

Monodehydroascorbate reductase

NAC:

NAM, ATAF, and CUC2

NAM:

No apical meristem

NO:

Nitric oxide

NR:

NCBI non-redundant protein

PER:

Peroxidase

PIN:

PIN-formed

POD:

Peroxidase

QORL:

Quinone oxidoreductase-like protein

qRT-PCR:

Real-time quantitative polymerase chain reaction

RAM:

Root apical meristem

RNA-seq:

RNA-sequencing

ROS:

Reactive oxygen species

RPKM:

Reads per kb per million reads

SAM:

S-adenosylmethionine

SNP:

Sodium nitroprusside

SOD:

Superoxide dismutase

TFs:

Transcription factors

WRKY:

WRKYGQK domain protein

ZF:

Zinc finger protein

References

  • Ahlfors R, Brosché M, Kollist H, Kangasj J (2009) Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12

    CAS  PubMed  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    CAS  PubMed  Google Scholar 

  • Arce D, Spetale F, Krsticevic F, Cacchiarelli P, Las Rivas J, Ponce S, Pratta G, Tapia E (2018) Regulatory motifs found in the small heat shock protein (sHSP) gene family in tomato. BMC Genomics 19(Suppl 8):860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  • Bai X, Todd CD, Desikan R, Yang Y, Hu X (2012) N-3-oxo-decanoyl-l-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158:725–736

    CAS  PubMed  Google Scholar 

  • Bannenberg G, Martinez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–95

    CAS  PubMed  Google Scholar 

  • Batish DR, Kaur S, Singh HP, Kohli RK (2008) Interaction between nitric oxide and superoxide anion regulates adventitious root formation in mung bean (Vigna radiata) hypocotyls. Nitric Oxide 19:S43–S72

    Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 832:117–132

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc 57:289–300

    Google Scholar 

  • Besson-Bard A, Astiera J, Rasula S, Wawera I, Dubreuil-Maurizia C, Jeandrozb S, Wendehennea D (2009) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309

    CAS  Google Scholar 

  • Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein Pept Lett 12:257–261

    CAS  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST + : architecture and applications. BMC Bioinform 10:421

    Google Scholar 

  • Cao D, Cheng H, Wu W, Soo HM, Peng J (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development in Arabidopsis. Plant Physiol 142:509–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamizo-Ampudia A, Sanz-Luque E, Llamas A, Galvan A, Fernandez E (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci 22:163–174

    CAS  PubMed  Google Scholar 

  • Chen YH, Chao YY, Hsu Y, Hong CY, Kao C (2012) Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. Plant Cell Rep 31:1085–1091

    CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde Noelia Foresi, Lamattina Lorenzo (2015) Nitric oxide is a ubiquitous signal for maintaining redox balance in plant cells: regulation of ascorbate peroxidase as a case study. J Exp Bot 66:2913–2921

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    CAS  PubMed  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol 143:1789–1801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:300041–3000410

    Google Scholar 

  • Ederli L, Reale L, Madeo L, Ferranti F, Gehring C, Fornaciari M, Romano B, Pasqualini S (2009) NO release by nitric oxide donors in vitro and in planta. Plant Physiol Bioch 47:42–48

    CAS  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do CT, Seguin A, Lapierre C, Jouanin L (2006) Evidence for a role of CAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    CAS  PubMed  Google Scholar 

  • Fabijan D, Yeung E, Mukherjee I, Reid DM (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings I Correlative influences and developmental sequence. Physiol Plant 53:578–588

    Google Scholar 

  • Fernández-Marcos M, Sanz L, Lewis, Muday GK, Lorenzo O (2011) Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proc Natl Acad Sci USA 108(45):18506–108511

    PubMed  PubMed Central  Google Scholar 

  • Flores T, Todd CD, Tovar-Mendez A, Dhanoa PK, Correa-Aragunde N, Hoyos ME, Brownfield DM, Mullen RT, Lamattina L, Polacco JC (2008) Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol 147:1936–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floryszak-Wieczorek J, Milczarek G, Arasimowicz M, Ciszewski A (2006) Do nitric oxide donors mimic endogenous NO-related response in plants? Planta 224:1363–1372

    CAS  PubMed  Google Scholar 

  • Fotopoulos V, Antoniou C, Filippou P, Mylona P, Fasoula D, Ioannides I (2014) Application of sodium nitroprusside results in distinct antioxidant gene expression patterns in leaves of mature and senescing Medicago truncatula plants. Protoplasma 251:973–978

    CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C, Altmann T, Sreenivasulu N, Baumlein H, Kuhlmann M (2014) AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS ONE 9:e110065

    PubMed  PubMed Central  Google Scholar 

  • Hatzilazarou SP, Syros TD, Yupsanis TA, Bosabalidis AM, Economou AS (2006) Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J Plant Physiol 163:827–836

    CAS  PubMed  Google Scholar 

  • Hirota A, Kato T, Fukaki H, Aida M, Tasaka M (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes P, Djordjevic MA, Imin N (2010) Global gene expression analysis of in vitro root formation in Medicago truncatula. Fun Plant Biol 37:1117–1131

    Google Scholar 

  • Hu X, Yang J, Li C (2015) Transcriptomic response to nitric oxide treatment in Larix olgensis Henry. Int J Mol Sci 16:28582–28597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang AX, She XP, Huang C, Song TS (2007) The dynamic distribution of NO and NADPH-diaphorase activity during IBA-induced adventitious root formation. Physiol Plant 130:240–249

    CAS  Google Scholar 

  • Huang AX, She XP, Cao BH, Ren Y (2011) Distribution of hydrogen peroxide during adventitious roots initiation and development in mung bean hypocotyls cuttings. Plant Growth Regul 4:109–118

    Google Scholar 

  • Ishihara A, Kawata N, Matsukawa T, Iwamura H (2000) Induction of N-hydroxycinnamoyltyramine synthesis and tyramine N-hydroxycinnamoyltransferase (THT) activity by wounding in maize leaves. Biosci Biotechnol Biochem 64:1025–1031

    CAS  PubMed  Google Scholar 

  • Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real–time PCR. BMC Mol Biol 9:59

    PubMed  PubMed Central  Google Scholar 

  • Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin C, Du S, Zhang Y, Lin X, Tang C (2009) Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum). Ann Bot 104:9–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbert Z, Bartha B, Erdei LJ (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165:967–975

    CAS  PubMed  Google Scholar 

  • Konishi M, Sugiyama M (2003) Genetic analysis of adventitious root formation with a novel series of temperature–sensitive mutants of Arabidopsis thaliana. Development 130:5637–5647

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped–read alignment with bowtie 2. Nat Methods 9:357–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK (2013) A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 25:3329–3346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    CAS  PubMed  Google Scholar 

  • Li SW, Xue L (2010) The interaction between H2O2 and NO, Ca2+, cGMP, and MAPKs during adventitious rooting in mung bean seedlings. Vitro Cell Dev Biol-Plant 46:142–148

    CAS  Google Scholar 

  • Li SW, Xue L, Xu S, Feng H, An L (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65:63–71

    CAS  Google Scholar 

  • Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J Plant Physiol 168:2153–2160

    CAS  PubMed  Google Scholar 

  • Li YH, Zou MH, Feng BH, Huang X, Zhang Z, Sun GM (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L) cotyledon segments. Plant Physiol Bioch 55:33–42

    CAS  Google Scholar 

  • Li SW, Shi RF, Leng Y (2015) De novo characterization of the mung bean transcriptome and transcriptomic analysis of adventitious rooting in seedlings using RNA-Seq. PLoS ONE 10:e0132969

    PubMed  PubMed Central  Google Scholar 

  • Li SW, Shi RF, Leng Y, Zhou Y (2016) Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 17:43

    PubMed  PubMed Central  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB–domain protein required for adventitious root formation in rice. Plant J 43:47–56

    PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−△△Ct method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Mauriat M, Petterle A, Bellini C, Moritz T (2014) Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J 78:372–384

    CAS  PubMed  Google Scholar 

  • Méndez-Bravo A, Raya-González J, Herrera-Estrella L, López-Bucio J (2010) Nitric oxide is involved in alkamide-induced lateral root development in Arabidopsis. Plant Cell Physiol 51:1612–1626

    PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(suppl 2):W182–W185

    PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  • Negi S, Sukumar P, Liu X, Cohen JD, Muday GK (2010) Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J 61:3–15

    CAS  PubMed  Google Scholar 

  • Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I (2008) Nitric oxide evolution and perception. J Exp Bot 59:25–35

    CAS  PubMed  Google Scholar 

  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC (2004) Nitric oxide mediates the indole acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide–responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    CAS  PubMed  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotech J 2:359–366

    CAS  Google Scholar 

  • Qi F, Xiang Z, Kou N, Cui W, Xu D, Wang R, Wang R, Zhu D, Shen W (2017) Nitric oxide is involved in methane-induced adventitious root formation in cucumber. Physiol Plant 159:366–377

    CAS  PubMed  Google Scholar 

  • Ranocha P, Denancé N, Vanholme R, Freydier A, Martinez Y, Hoffmann L, Köhler L, Pouzet C, Renou JP, Sundberg B (2010) Walls are thin1 (WAT1), an Arabidopsis homolog of Medicago truncatula NODULIN21, is a tonoplast–localized protein required for secondary wall formation in fibers. Plant J 633:469–483

    Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H et al (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    CAS  PubMed  Google Scholar 

  • Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R, Legué V (2012) The aintegumenta like1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol 160:1996–2006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roppolo D, Boeckmann B, Pfister A, Boutet E, Rubio MC, Dénervaud-Tendon V, Vermeer JE, Gheyselinck J, Xenarios I, Geldner N (2014) Functional and evolutionary analysis of the casparian strip membrane domain protein family. Plant Physiol 165:1709–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena C, Samantaray S, Rout GR, Das P (2000) Effect of auxins on in vitro rooting of Plumbungo zeylanica: peroxidase activity as a marker for root induction. Biol Plant 43:121–124

    CAS  Google Scholar 

  • She XP, Huang AX (2004) Change of nitric oxide and NADPH-diaphorase during the generation and the development of adventitious roots in mung bean hypocotyls cuttings. Act Bot Sin 46:1049–1055

    CAS  Google Scholar 

  • Shi JH, Yang ZB (2011) Is ABP1 an auxin receptor yet? Mol Plant 4:635–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi HT, Li RJ, Cai W, Liu W, Fu ZW, Lu YT (2012) In vivo role of nitric oxide in plant response to abiotic and biotic stress. Plant Signal Behav 7:438–440

    Google Scholar 

  • Shi H, Ye T, Zhu JK, Chan Z (2014) Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. J Exp Bot 65:4119–4131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot MP, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS et al (2014) SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26:2129–2142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    CAS  PubMed  Google Scholar 

  • Sun H, Li J, Song W, Tao J, Huang S, Chen S et al (2015a) Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by modulating lateral root formation and inorganic nitrogen uptake rate in rice. J Exp Bot 66:2449–2459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C (2015b) Nitric oxide alleviates aluminum–induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57:550–561

    CAS  PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M (2012) Nitric oxide in fluencies auxin signaling through S–nitrosylation of the Arabidopsis TRANSPORT INHIBITORRESPONSE1 auxin receptor. Plant J 70:492–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari RK, Hahn Eun-Joo, Paek Kee-Yoeup (2008) Function of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. Plant Cell Rep 27:563–573

    CAS  PubMed  Google Scholar 

  • Thamilarasan SK, Park JI, Jung HJ, Nou IS (2014) Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genomics 15:422

    PubMed  PubMed Central  Google Scholar 

  • Trupiano D, Yordanov Y, Regan S, Meilan R, Tschaplinski T, Scippa G, Busov V (2013) Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta 238:271–282

    CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    CAS  PubMed  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63:551–562

    CAS  PubMed  Google Scholar 

  • Wang KLC, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945–950

    CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics 26:136–138

    PubMed  Google Scholar 

  • Wang R, Liu X, Liang S, Ge Q, Li Y, Shao J, Qi Y, An L, Yu F (2015) Subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. J Exp Bot 66:6327–6343

    CAS  PubMed  Google Scholar 

  • Welander M, Geier T, Smolka A, Ahlman A, Fan J, Zhu LH (2014) Orign, timeing, and gene expression profile of adventitious rooting in Arabicopsis hypocotyls and stems. Am J Bot 101:255–266

    CAS  PubMed  Google Scholar 

  • Wodala B, Ordog A, Horvath F (2010) The cost and risk of using sodium nitroprusside as a NO donor in chlorophyll fluorescence experiments. J Plant Physiol 167:1109–1111

    CAS  PubMed  Google Scholar 

  • Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y, Hasegawa A, Mizutani M, Sugimoto Y (2012) Chloroplastic NADPH-dependent alkenal/one oxidoreductase contributes to the detoxification of reactive carbonyls produced under oxidative stress. FEBS Lett 586:1208–1213

    CAS  PubMed  Google Scholar 

  • Yang W, Zhu C, Ma X, Li G, Gan L, Ng D, Xia K (2013) Hydrogen peroxide is a second messenger in the salicylic acid–triggered adventitious rooting process in mung bean seedlings. PLoS ONE 8(12):e84580

    PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin P, Fan H, Hao Q, Yuan X, Wu D, Pang Y et al (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16:1230–1236

    CAS  PubMed  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM (2002) Differential expression and function of Arabidopsis thaliana NHX Na(+)/H(+) antiporters in the salt stress response. Plant J 30:529–539

    CAS  PubMed  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    CAS  PubMed  Google Scholar 

  • Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inze D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol 141:404–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zazimalova E, Krecek P, Skupa P, Hoyerova K, Petrasek J (2007) Polar transport of the plant hormone auxin—the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64:1621–1637

    CAS  PubMed  Google Scholar 

  • Zeng F, Sun F, Li L, Liu K, Zhan Y (2014) Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway. PLoS ONE 9:e116157

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zheng L, Wang J (2012) Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl Microbiol Biot 93:455–466

    CAS  Google Scholar 

  • Zhang Y, Su J, Cheng D, Wang R, Mei Y, Hu H, Shen W, Zhang Y (2018) Nitric oxide contributes to ethane-induced osmotic stress tolerance in mung bean. BMC Plant Biol 18:207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Underhill SJ (2016) Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response. Plant Physiol Biochem 98:81–88

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31760110 and 31560121).

Author information

Authors and Affiliations

Authors

Contributions

LSW conceived and designed the experimental plan, analyzed, and interpreted the sequence data, and drafted the manuscript. LY and SRF performed the experiments and analyzed the sequence data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shi-Weng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 107 kb)

Supplementary material 2 (XLSX 49 kb). Table S2: Top list of the differentially regulated GOs

Supplementary material 3 (XLSX 15 kb). Table S3: Top list of the differentially regulated KOs

Supplementary material 4 (XLSX 56 kb). Table S4: List of DEGs in the sample pair NO6 vs. Wat6

Supplementary material 5 (XLSX 54 kb). Table S5: List of DEGs in the sample pair NO24 vs. Wat24

Supplementary material 6 (XLSX 24 kb). Table S6: List of differentially expressed genes of transcription factors

344_2019_9993_MOESM7_ESM.xlsx

Supplementary material 7 (XLSX 12 kb). Table S7: List of differentially expressed genes associated with plant hormone signaling

Supplementary material 8 (PDF 130 kb). Table S8: Comparation of DEGs that respond to SNP and IBA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SW., Leng, Y. & Shi, RF. Transcriptome Characterization of Gene Profiling During Early Stage of Nitric Oxide-Induced Adventitious Rooting in Mung Bean Seedlings. J Plant Growth Regul 39, 430–455 (2020). https://doi.org/10.1007/s00344-019-09993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09993-y

Keywords

Navigation