Quantitative Trait Locus Mapping for Yield-Associated Agronomic Traits in a BC2F6 Population of Japonica Hybrid Rice Liaoyou 5218

Abstract

RAD-seq method is a recently developed, cost-effective, and high-throughput approach for detecting genetic variability based on single-nucleotide polymorphisms (SNPs) and high-density genetic map. This study aimed to construct the quantitative trait locus (QTL) mapping for yield-associated agronomic traits in rice using a BC2F6 population which was derived from japonica hybrid rice Liaoyou 5218. Liaoyou 5218 were firstly crossed to female parent 5216A, and the subsequent self-crossed BC1F6 population was backcrossed to 5216A. The 167 BC2F6 breeding lines showed different agronomic traits from parental Liaoyou 5218 and C418. RAD-seq and bioinformatics methods were used to identify high-quality SNPs in the 167 BC2F6 breeding lines, which generated 40968 SNP markers on 12 chromosomes in rice. Linkage and QTL mapping was constructed, and 14 QTLs related to 6 agronomic traits were identified, including 4, 3, and 4 QTLs on chr03, 09, and 10, respectively. Among the yield-associated QTLs mapping genes, ITPK3 and EGY3 were related to plant height; CYP724B1, GAPC2, TRS120, BADH1, AOX1aAOX1b, and COLD1 were associated with average panicle length; ACT2 and BAMY1 were associated with 1000-grain weight and tiller number per plant, respectively. We suggested that the 14 QTLs in the BC2F6 breeding lines derived from Liaoyou 5218 might be of important values for the identification and marker-assisted selection of candidate genes in rice breeding.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aoki Y, Okamura Y, Tadaka S, Kinoshita K, Obayashi T (2016) ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression. Plant Cell Physiol 57:e5. https://doi.org/10.1093/pcp/pcv165

    CAS  Article  PubMed  Google Scholar 

  2. Baicharoen A, Vijayan R, Pongprayoon P (2018) Structural insights into betaine aldehyde dehydrogenase (BADH2) from Oryza sativa explored by modeling and simulations. Sci Rep 8:12892. https://doi.org/10.1038/s41598-018-31204-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson AE (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. https://doi.org/10.1371/journal.pone.0003376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Begum H, Spindel JE, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, Mccouch SR (2015) Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLoS ONE 10:e0119873. https://doi.org/10.1371/journal.pone.0119873

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bodénès C, Chancerel E, Ehrenmann F, Kremer A, Plomion C (2016) High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res 23:115–124. https://doi.org/10.1093/dnares/dsw001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Brar DS, Khush GS (2018) Wild relatives of rice: a valuable genetic resource for genomics and breeding research. Springer, Cham, pp 1–25

    Google Scholar 

  7. Brondani C, Rangel N, Brondani V, Ferreira E (2002) QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet 104:1192–1203. https://doi.org/10.1007/s00122-002-0869-5

    CAS  Article  PubMed  Google Scholar 

  8. Chemaly ER, Kang S, Zhang S, Mccollum LT, Chen J, Bénard L, Purushothaman KR, Hajjar RJ, Lebeche D (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. J Physiol 591:5337–5355. https://doi.org/10.2135/cropsci2014.07.0460

    Article  Google Scholar 

  9. Chen X, Yuan L, Ludewig U (2016) Natural genetic variation of seed micronutrients of Arabidopsis thaliana grown in zinc-deficient and zinc-amended soil. Front Plant Sci 7:1070. https://doi.org/10.3389/fpls.2016.01070

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dong Z, Yu Y, Li S, Wang J, Tang S, Huang R (2016) Abscisic acid antagonizes ethylene production through the ABI4-mediated transcriptional repression of ACS4 and ACS8 in arabidopsis. Mol Plant 9:126–135. https://doi.org/10.1016/j.molp.2015.09.007

    CAS  Article  PubMed  Google Scholar 

  11. Duitama J, Silva A, Sanabria Y, Cruz DF, Quintero C, Ballen C, Lorieux M, Scheffler B, Farmer A, Torres E (2015) Whole genome sequencing of elite rice cultivars as a comprehensive information resource for marker assisted selection. PLoS ONE 10:e0124617. https://doi.org/10.1371/journal.pone.0124617

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fan W, Zong J, Luo Z, Chen M, Zhao X, Zhang D, Qi Y, Yuan Z (2016) Development of a RAD-Seq based DNA polymorphism identification software, AgroMarker finder, and its application in rice marker-assisted breeding. PLoS ONE 11:e0147187. https://doi.org/10.1371/journal.pone.0147187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Geber A, Hitchcock CA, Swartz JE, Pullen FS, Marsden KE, Kwonchung KJ, Bennett JE (1995) Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 39:2708–2717

    CAS  Article  Google Scholar 

  14. Gichuhi E, Himi E, Takahashi H, Zhu S, Doi K, Tsugane K, Maekawa M (2016) Identification of QTLs for yield-related traits in RILs derived from the cross between pLIA-1 carrying Oryza longistaminata chromosome segments and Norin 18 in rice. Breed Sci 66:720–733. https://doi.org/10.1270/jsbbs.16083

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Guo M, Yang YH, Liu M, Meng QC, Zeng XH, Dong LX, Tang SZ, Gu MH, Yan CJ (2014a) Clustered spikelets 4, encoding a putative cytochrome P450 protein CYP724B1, is essential for rice panicle development. Chin Sci Bull 59:4050–4059. https://doi.org/10.1007/s11434-014-0568-z

    CAS  Article  Google Scholar 

  16. Guo Y, Yuan H, Fang D, Song L, Liu Y, Liu Y, Wu L, Yu J, Li Z, Xu X (2014b) An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genom 15:956. https://doi.org/10.1186/1471-2164-15-956

    CAS  Article  Google Scholar 

  17. He Q, Yu J, Kim TS, Cho YH, Lee YS, Park YJ (2015) Resequencing reveals different domestication rate for BADH1 and BADH2 in rice (Oryza sativa). PLoS ONE 10:e0134801. https://doi.org/10.1371/journal.pone.0134801

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Hu WW, Gong H, Pua EC (2010) Modulation of SAMDC expression in Arabidopsis thaliana alters in vitro shoot organogenesis. Physiol Plant 128:740–750. https://doi.org/10.1111/j.1399-3054.2006.00799.x

    CAS  Article  Google Scholar 

  19. Hyejeong C, Hyekyoung K, Wang MH (2010) Expression of Kip-related protein 4 gene (KRP4) in response to auxin and cytokinin during growth of Arabidopsis thaliana. BMB Rep 43:273–278. https://doi.org/10.5483/BMBRep.2010.43.4.273

    Article  Google Scholar 

  20. Ito Y, Saisho D, Nakazono M, Tsutsumi N, Hirai A (1997) Transcript levels of tandem-arranged alternative oxidase genes in rice are increased by low temperature. Gene 203:121. https://doi.org/10.1016/S0378-1119(97)00502-7

    CAS  Article  PubMed  Google Scholar 

  21. Khush GS (2013) Strategies for increasing the yield potential of cereals: case of rice as an example. Plant Breed 132:433–436. https://doi.org/10.1111/pbr.1991

    CAS  Article  Google Scholar 

  22. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    CAS  Article  Google Scholar 

  23. Lee T, Yang S, Kim E, Ko Y, Hwang S, Shin J, Shim JE, Shim H, Kim H, Kim C (2015) AraNet v2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res 43:996–1002. https://doi.org/10.1093/nar/gku1053

    CAS  Article  Google Scholar 

  24. Li C, Bai G, Carver BF, Chao S, Wang Z (2015) Single nucleotide polymorphism markers linked to QTL for wheat yield traits. Euphytica 206:89–101. https://doi.org/10.1007/s10681-015-1475-3

    Article  Google Scholar 

  25. Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z (2016) High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim Genet 47:81–90. https://doi.org/10.1111/age.12372

    CAS  Article  PubMed  Google Scholar 

  26. Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221. https://doi.org/10.1016/j.cell.2015.01.046

    CAS  Article  PubMed  Google Scholar 

  27. Mcdowell JM, Huang S, Mckinney EC, Chambliss S, Meagher RB (2010) Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J Cell Mol Biol 10:107–121. https://doi.org/10.1046/j.1365-313X.1996.10010107.x

    Article  Google Scholar 

  28. Naramoto S, Nodzyński T, Dainobu T, Takatsuka H, Okada T, Friml J, Fukuda H (2014) VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. Plant Cell Physiol 55:750. https://doi.org/10.1093/pcp/pcu012

    CAS  Article  PubMed  Google Scholar 

  29. Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445. https://doi.org/10.1038/ncomms2396

    CAS  Article  PubMed  Google Scholar 

  30. Nunes JDRDS, Liu S, Pértille F, Perazza CA, Villela PMS, Almeidaval VMFD, Hilsdorf AWS, Liu Z, Coutinho LL (2017) Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing. Sci Rep 7:46112. https://doi.org/10.1038/srep46112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Pan L, Yin Z, Huang Y, Chen J, Zhu L, Zhao Y, Guo J (2017) QTL for maize grain yield identified by QTL mapping in six environments and consensus loci for grain weight detected by meta-analysis. Plant Breed 136:820–833. https://doi.org/10.1111/pbr.12524

    CAS  Article  Google Scholar 

  32. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14:556–556. https://doi.org/10.1186/1471-2164-14-556

    CAS  Article  Google Scholar 

  33. Peng Y, Hu Y, Mao B, Xiang H, Shao Y, Pan Y, Sheng X, Li Y, Ni X, Xia Y (2015) Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq. Mol Genet Genom 291:297–307. https://doi.org/10.1007/s00438-015-1104-9

    CAS  Article  Google Scholar 

  34. Pujol V, Forrest KL, Zhang P, Rouse MN, Hayden MJ, Huang L, Tabe L, Lagudah E (2015) Identification of a stem rust resistance locus effective against Ug99 on wheat chromosome 7AL using a RAD-Seq approach. Theor Appl Genet 128:1397–1405. https://doi.org/10.1007/s00122-015-2514-0

    CAS  Article  PubMed  Google Scholar 

  35. Reineke LC (2014) Reassessment of QTLs for Late Blight Resistance in the Tomato Accession L3708 using a Restriction Site Associated DNA (RAD) linkage map and highly aggressive isolates of Phytophthora infestans. PLoS ONE 9:e96417. https://doi.org/10.1371/journal.pone.0096417

    CAS  Article  Google Scholar 

  36. Schwacke R, Fischer K, Ketelsen B, Krupinska K, Krause K (2007) Comparative survey of plastid and mitochondrial targeting properties of transcription factors in Arabidopsis and rice. Mol Genet Genom 277:631–646. https://doi.org/10.1007/s00438-007-0214-4

    CAS  Article  Google Scholar 

  37. Sheng WT, Jun WU, Bai B, Rao YS (2017) Research progress on utilization of wild rice germplasm in rice high-yield breeding. J South Agric 48:222–230

    Google Scholar 

  38. Shi Y, Yang S (2015) COLD1: a cold sensor in rice. Sci China Life Sci 58:409–410. https://doi.org/10.1007/s11427-015-4831-6

    Article  PubMed  Google Scholar 

  39. Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q (2016) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp Bot 67:195–205. https://doi.org/10.1093/jxb/erv459

    CAS  Article  PubMed  Google Scholar 

  40. Stratula OR, Kalendar RN, Sivolap YM (2015) Allelic variants of the gene bamy1 barley in Eastern European and Central Asian areas. Cytol Genet 49:80–89. https://doi.org/10.3103/S0095452715020103

    Article  Google Scholar 

  41. Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G (2016) Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed 36:1–11. https://doi.org/10.1007/s11032-016-0436-4

    CAS  Article  Google Scholar 

  42. Tang W, Wu T, Ye J, Sun J, Jiang Y, Yu J, Tang J, Chen G, Wang C, Wan J (2016) Erratum to: SNP-based analysis of genetic diversity reveals important alleles associated with seed size in rice. BMC Plant Biol 16:93. https://doi.org/10.1186/s12870-016-0801-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Terziyska N, Lutz T, Kozany C, Mokranjac D, Mesecke N, Neupert W, Herrmann J, Hell K (2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett 579:179–184. https://doi.org/10.1016/j.febslet.2004.11.072

    CAS  Article  PubMed  Google Scholar 

  44. Thakur A, Bhatla SC (2015) Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development. Plant Signal Behav 10:e1030100. https://doi.org/10.1080/15592324.2015.1030100

    CAS  Article  PubMed  Google Scholar 

  45. Vishwakarma A, Bashyam L, Senthilkumaran B, Scheibe R, Padmasree K (2014) Physiological role of aox1a in photosynthesis and maintenance of cellular redox homeostasis under high light in arabidopsis thaliana. Plant Physiol Biochem 81:44–53. https://doi.org/10.1016/j.plaphy.2014.01.019

    CAS  Article  PubMed  Google Scholar 

  46. Wang J, Wang Z, Du X, Yang H, Han F, Han Y, Yuan F, Zhang L, Peng S, Guo E (2017) A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq. PLoS ONE 12:717. https://doi.org/10.1371/journal.pone.0179717

    CAS  Article  Google Scholar 

  47. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718. https://doi.org/10.1371/journal.pone.0000718

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Wu K, Liu H, Yang M, Tao Y, Ma H, Wu W, Zuo Y, Zhao Y (2014) High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol 14:1–14. https://doi.org/10.1186/s12870-014-0274-7

    CAS  Article  Google Scholar 

  49. Zhou L, Wang SB, Jian J, Geng QC, Wen J, Song Q, Wu Z, Li GJ, Liu YQ, Dunwell JM (2015) Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci Rep 5:9350. https://doi.org/10.1038/srep09350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation (31271676), National Key R&D Program of China (2016YFD0101106), Tianjin Key R&D Program (18YFZCNC01250), and Tianjin Modern Agricultural Industry Technology System Innovation Team (ITTRRS2018010 and ITTRRS2018008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhengjin Xu.

Ethics declarations

Conflict of interest

All authors declared there were no conflicts of interests involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hua, Z., Dong, L. et al. Quantitative Trait Locus Mapping for Yield-Associated Agronomic Traits in a BC2F6 Population of Japonica Hybrid Rice Liaoyou 5218. J Plant Growth Regul 39, 60–71 (2020). https://doi.org/10.1007/s00344-019-09963-4

Download citation

Keywords

  • RAD-seq
  • Oryza sativa
  • Quantitative trait locus
  • Single-nucleotide polymorphism
  • Agronomic trait