Skip to main content
Log in

Morphophysiological and Biochemical Responses of Lippia grata Schauer (Verbenaceae) to Water Deficit

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In the present study, we investigated the morphophysiological and biochemical responses of the species Lippia grata Schauer to water deficit. Plants from cuttings were submitted to two water regimes, irrigation (control) and suspended irrigation (stress) for 15 days and were then rehydrated for 10 days. During water regimes, we performed physiological (gas exchange, growth parameters, and biochemical) and anatomical analyses. The water deficit negatively affected growth of the aerial part of the plant with reduction of approximately 72%. On the contrary, root system growth was stimulated by water deficit (increase of 205%). The drought caused a reduction in the physiological parameters (gs, E, and A), while leaf temperature and internal and external CO2 concentration ratio (Ci/Ca) increased. Plants subjected to drought had higher intrinsic efficiency of water use on the 10th day of deficit (A/gs). The levels of total chlorophyll, carotenoids, and soluble carbohydrates increased on the 10th and 15th days of water suspension. The levels of H2O2, proteins, and MDA were high in plants on the 15th day of water deficit. The levels of H2O2 in the control plants increased on the 20th and 25th day of rehydration, along with the activation of some enzymes of the antioxidative system SOD, CAT and APX. Plants under water deficit increased SOD activity on the 10th day and CAT on the 10th and 15th day under stress. Plants submitted to water deficit showed reduction of mesophilic thickness, smaller epidermal cells, reduction of intercellular spaces, more vascular bundles, greater lignification of xylem cells, morphological modification of cortical cells, and have more glandular trichomes in the abaxial face compared to plants always irrigated. During rehydration, the plants submitted to the water deficit recovered in all variables analyzed and have a higher density of glandular and the tector trichomes in both epidermises, adaxial and abaxial. We conclude that the rapid recovery of the parameters evaluated for Lippia grata are related to the absence of irreversible damage in the cellular structures, due to the efficiency of the antioxidative system, and metabolic processes involved with the dissipation of the excess energy because of the imposed water stress. In addition, other important morphophysiological strategies such as increased root growth, increased vascular bundles and density of trichomes improved soil water absorption and maintained the cellular water content in Lippia grata plants submitted to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Afzal A, Gulzar I, Shahbaz M, Ashraf M (2014) Water deficit-induced regulation of growth, gas exchange, chlorophyll fluorescence, inorganic nutrient accumulation and antioxidative defense mechanism in mungbean [Vigna radiata (L.) Wilczek]. J Appl Bot Food Qual 87:147–156

    Google Scholar 

  • Ajithkumar IP, Panneerselvam R (2014) ROS scavenging system, osmotic maintenance, pigment and growth status of Panicum sumatrense roth. under drought stress. Cell Biochem Biophys 68:587–595

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Xiel X, Wangl L, Saleem F, Manl C, Leil W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032. https://doi.org/10.5897/AJAR10.027

    Article  Google Scholar 

  • Aou-ouad HE, López R, Venturas M, Martorell S, Medrano H, Gulías J (2017) Low resistance to cavitation and xylem anatomy partly explain the decrease in the endemic Rhamnus ludovici-salvatoris. Flora 229:1–8. https://doi.org/10.1016/j.flora.2017.01.005

    Article  Google Scholar 

  • Aranda I, Cano FJ, Gascó A, Cochard H, Nardini A, Mancha JA, López R, Sánchez-Gómez D (2015) Variation in photosynthetic performance and hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree Physiol 35:34–46. https://doi.org/10.1093/treephys/tpu101

    Article  CAS  PubMed  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104(2):280–292. https://doi.org/10.1034/j.1399-3054.1998.1040217.x

    Article  CAS  Google Scholar 

  • Barbosa MR, Silva MMA, Willadino L, Ulisses C, Camara TR (2014) Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. enzimática de espécies reativas de oxigênio em plantas. Ciênc Rural 44:453–460

    Article  CAS  Google Scholar 

  • Bitu VCN, Costa JGM, Rodrigues FFG, Colares AV, Coutinho HDM, Botelho MA (2015) Effect of collection time on composition of essential oil of Lippia gracilis Schauer (Verbenaceae) growing in Northeast Brazil. J Essent Oil Bea Plant 18(3):647–653. https://doi.org/10.1080/0972060X.2014.935043

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bukatsch F (1972) Bemerkungen zur Doppelfärbung Astrablau-Safranin. Microkosmos 61:255

    Google Scholar 

  • Cavatte PC, Oliveira AAG, Morais LE, Martins SCV, Sanglard LMVP, DaMatta FM (2012) Could shading reduce the negative impacts of drought on coffee: a morphophysiological analysis. Physiol Plant 144:111–122. https://doi.org/10.1111/j.1399-3054.2011.01525.x

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira RC, Costa JM, Chaves MM, Rodrigues JD (2015) Fisiologia e metabolismo foliar em duas variedades de videira sujeitas a um ciclo de déficit hídrico e reidratação. Rev Bras Ciênc Agrár 10:211–217

    Google Scholar 

  • Chartzoulakis K, Patakas G, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hortic 95:39–50. https://doi.org/10.1016/S0304-4238(02)00016-X

    Article  CAS  Google Scholar 

  • Cruz EMO, Pinto JAO, Fontes SS, Arrigoni-Blanck MF, Bacci L, De Jesus HCR, Santos DA, Alves PB, Blank AF (2014) Water deficit and seasonality study on essential oil constituents of Lippia gracilis Schauer germplasm. Sci World J 2014:1–9. https://doi.org/10.1155/2014/314626

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13. https://doi.org/10.3389/fenvs.2014.00053

    Article  CAS  Google Scholar 

  • Dianat M, Saharkhiz MJ, Tavassolian I (2016) Salicylic acid mitigates drought stress in Lippia citriodora L.: effects on biochemical traits and essential oil yield. Biocatal Agric Biotechnol 8:286–293. https://doi.org/10.1016/j.bcab.2016.10.010

    Article  Google Scholar 

  • Dominghetti AW, Souza AJJ, Silveira HRO, Sant’Ana JAV, Souza KRD, Guimarães RJ, Lacerda JR (2016) Tolerância ao déficit hídrico de Cafeeiros produzidos pos estaquia e embriogênese somática. Coffee Sci 11:117–126

    Google Scholar 

  • Eisenhut M, Bräutigam A, Timm S, Florian A, Tohge T, Fernie AR, Bauwe H, Weber APM (2017) Photorespiration is crucial for dynamic response of photosynthetic metabolism and stomatal movement to altered CO2 availability. Mol Plant 10(47–61):2017. https://doi.org/10.1016/j.molp.2016.09.011

    Article  CAS  Google Scholar 

  • Fahn A, Cutler DA (1992) Xerophytes, 1º edn. Gebruder Borntraeger, Berlin

    Google Scholar 

  • Ferraz RPC, Bomfim DS, Carvalho NC, Soares MBP, Silva TB, Machado WJ, Prata APN, Costa EV, Moraes VRS, Nogueira PCL, Bezerr DP (2013) Cytotoxic effect of leaf essential oil Lippia gracilis Schauer (Verbenaceae). Phytomedicine 20:615–621. https://doi.org/10.1016/j.phymed.2013.01.015

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases I occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gomes SVF, Nogueira PCL, Moraes VRS (2011) Aspectos químicos e biológicos do gênero Lippia enfatizando Lippia gracilis Schauer. Eclet Quim J 36:64–77

    Article  Google Scholar 

  • Gorai M, Laajili W, Santiago LS, Neffati M (2015) Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. Environ Exp Bot 109:113–121. https://doi.org/10.1016/j.envexpbot.2014.08.011

    Article  CAS  Google Scholar 

  • Havir EA, Mchale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. https://doi.org/10.1104/pp.84.2.450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast: kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Johansen DA (1940) Plant micro technique. McGraw-Hill Book Co., Inc, New York

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Lakra N, Nutan KK, Das P, Anwar K, Singla-Pareek SL, Pareek A (2015) A nuclear-localized histone-gene binding protein from rice (OsHBP1b) functions in salinity and drought. Plant Physiol 176:36–46. https://doi.org/10.1016/j.jplph.2014.11.005

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1949) ChlorolShylls and carotenoids: pigments of photosynthetic biomembranes. Plant Physiol 1:50–382

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lima Neto MC, Cunha JR, Federal U (2017) Cyclic electron flow, NPQ and photorespiration are crucial for the establishment of young plants of Ricinus and Jatropha curcas exposed to drought. Plant Biol 19(4):650–659. https://doi.org/10.1111/ijlh.12426

    Article  CAS  PubMed  Google Scholar 

  • Lima GP, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, Morais SM, Carvalho AFU (2013) Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res 112:1953–1958

    Article  PubMed  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho MJM, Albuquerque CC, Morais MB, Souza MCG, Silva KMB (2011) Estabelecimento de protocolo para micropropagação de Lippia gracilis Schauer. Rev Bras Plant Med 13:246–252

    Article  Google Scholar 

  • Marreto RN, Almeida EECV, Alves PB, Niculau ES, Nunes RS, Matos CRS, Araújo AAS (2008) Thermal analyses and gás chromatography coupled mass spectrometry analyses of hidroxipropylmetry analyses of hidroxipropyl-β-cyclodextrin inclusion complex containing Lippia gracilis essential oil. Thermochim Acta 475:53–58. https://doi.org/10.1016/j.tca.2008.06.015

    Article  CAS  Google Scholar 

  • Melo JO (2013) Antidermatophytic and antileishmanial activities of essential oils from Lippia gracilis Schauer genotypes. Acta Trop 128:110–115

    Article  PubMed  Google Scholar 

  • Ministério do Meio Ambiente (2014) Caatinga http://www.mma.gov.br/biomas/caatinga

  • Moraes VRS, Thomasi SS, Sprenger RF, Prado VMJ, Cruz EMO, Cass QB, Ferreira AG, Blank AF (2017) Secondary metabolites from an infusion of Lippia gracilis Schauer using the LC-DAD-SPE/NMR hyphenation technique. J Braz Chem Soc 28(7):1335–1340. https://doi.org/10.21577/0103-5053.20160299

    Article  CAS  Google Scholar 

  • Morais MB, Barbosa-Neto AG, Willadino L, Ulisses C, Calsa Junior T (2018a) Salt stress induces increase in starch accumulation in duckweed (Lemna aequinoctialis, Lemnaceae): biochemical and physiological aspects. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9882-z

    Article  Google Scholar 

  • Morais MB, Camara TR, Ulisses C, Carvalho Filho JLS, Willadino L (2018b) Multiple stresses on the oxidative metabolism of sugarcane varieties. Cienc Rural 48:1–8. https://doi.org/10.1590/0103-8478cr20141487

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Palhares Neto L, Souza LM, Morais MB, Albuquerque CC, Camara TR, Ulisses C (2018) Controlling hyperhydricity in micropropagated plants of Lippia grata Schauer (Verbenaceae), a native species of a dry seasonal tropical forest with pharmacological potential. Braz J Bot 41:529–538. https://doi.org/10.1007/s40415-018-0476-6

    Article  Google Scholar 

  • Pinto CDM, José F, Fernandes A (2014) Relações hídricas, trocas gasosas em amendoim, gergelim e mamona submetidos a ciclos de deficiência hídrica. Agropecuária Téc 35:31–40

    Google Scholar 

  • Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007) Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol 174:787–798. https://doi.org/10.1111/j.1469-8137.2007.02061.x

    Article  CAS  PubMed  Google Scholar 

  • Roxana E, Vignolo F, Vos D (2014) Model elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. Plant Sci. https://doi.org/10.1016/j.plantsci.2014.11.001

    Article  Google Scholar 

  • Santelia D, Lawson T (2016) Rethinking guard cell metabolism. Plant Physiol 172:371–1392. https://doi.org/10.1104/pp.16.00767

    Article  CAS  Google Scholar 

  • Santos JP, Araújo EL, Albuquerque UP (2008) Richness and distribution of useful woody plants in the semi-arid region of northeastern Brazil. J Arid Environ 72:652–663. https://doi.org/10.1016/j.jaridenv.2007.08.004

    Article  Google Scholar 

  • Sass JE (1951) Botanical microtechnique, 2nd edn. The Lowa State College Press, Ames

    Google Scholar 

  • Savchenko T, Kolla VA, Wang C, Hicks ZNDR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K (2014) Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–1160. https://doi.org/10.1104/pp.113.234310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:1–21. https://doi.org/10.3389/fpls.2016.00187

    Article  Google Scholar 

  • Shi K, Li X, Zhang H, Zhang G, Liu Y, Zhou Y, Xia X, Chen Z, Yu J (2015) Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 induced stomatal movement in tomato. New Phytol 208:342–353. https://doi.org/10.1111/nph.13621

    Article  CAS  PubMed  Google Scholar 

  • Silva VN, Souto LS, Dutra Filho JA, Souza TMA, Borges CHA (2015) Deposição de serapilheira em uma área de caatinga preservada no semiárido da Paraíba. Bras Rev Verde 10:21–25

    Article  Google Scholar 

  • Silva CMS, Harakava R, Sonsin-Oliveira J, Marcati CR, Machado SR, Ribeiro RV, Habermann G (2017a) Physiological and structural traits of the congeneric species Styrax ferrugineus and S. pohlii occurring in contrasting environments. Flora 235:51–58. https://doi.org/10.1016/j.flora.2017.01.014

    Article  Google Scholar 

  • Silva PA, Cosme VS, Rodrigues KCB, Detmann KSC, Leão FM, Cunha RL, Buselli RAF, DaMatta FM, Pinheiro HA (2017b) Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta Physiol Plant 39(2):58. https://doi.org/10.1007/s11738-017-2354-4

    Article  CAS  Google Scholar 

  • Silva-Pinheiro J, Lins L, Souza FC, Silva CEM, Moura FBP, Endres L, Justino GC (2016) Drought-stress tolerance in three semi-arid species used to recover logged áreas. Braz J Bot 39:1031–1038

    Article  Google Scholar 

  • Silveira PS, Custódio JPC, Silva FCM, Nascente ACS, Monteiro CL, Matos FS (2016) A ação dos brassinosteróides no crescimento de mudas de pinhão manso sob déficit hídrico. Agri-Environ Sci 2:52–61

    Google Scholar 

  • Souza AVV, Santos US, Correa RM, Souza DD, Oliveira FJV (2017) Essential oil content and chemical composition of Lippia gracilis schauer cultived in the Sub-meddle São Francisco Valley. J Essent Oil Bear Plant 20:983–994. https://doi.org/10.1080/0972060X.2017.1377117

    Article  Google Scholar 

  • Tatagiba SD, Pezzopane JEM, Reis EF (2015) Fotossíntese em Eucalyptus sob diferentes condições edafoclimáticas. Eng Agric 23:336–345

    Google Scholar 

  • Tian L, Xu P, Chukhutsina VU, Holzwarth AR, Croce R (2016) Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 114:4828–4832. https://doi.org/10.1073/pnas.1621051114

    Article  CAS  Google Scholar 

  • Torres-Ruiz JM, Cochard H, Fonseca E, Badel E, Gazarini L, Vaz M (2017) Differences in functional and xylem anatomical features allow Cistus species to co-occur and cope differently with drought in the Mediterranean region. Tree Physiol 37:755–766. https://doi.org/10.1093/treephys/tpx013

    Article  PubMed  Google Scholar 

  • Trevisan MTS, Marques RA, Silva MGV, Scherer D, Haubner R, Ulrich CM, Owen RW (2016) Composition of essential oils and ethanol extracts of the leaves of lippia species: identification, quantitation and antioxidant capacity. Rec Nat Prod 10:485–496

    CAS  Google Scholar 

  • Voss I, Sunil B, Scheibe R, Raghavendra AS (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biol 15:713–722. https://doi.org/10.1111/j.1438-8677.2012.00710.x

    Article  CAS  PubMed  Google Scholar 

  • Wang GP, Hui Z, Li F, Zhao MR, Zhang J, Wang W (2010) Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol 4:213–222

    Article  Google Scholar 

  • Yemm EW, Willis AJ (1954) The estimation of carbohydrates in plant extract by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi X, Zhang Y, Yao H, Luo H, Gou L, Chow WS, Zhang W (2016) Rapid recovery of photosynthetic rate following soil water deficit andre-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. J Plant Physiol 194:23–34. https://doi.org/10.1016/j.jplph.2016.01.016

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhan DX, Luo HH, Zhang YL, Zhang WF (2016) Photorespiration and photoinhibition in the bracts of cotton under water stress. Photosynthetica 54:12–18. https://doi.org/10.1007/s11099-015-0139-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Universidade Federal Rural de Pernambuco, in particular the team of Laboratório de Cultura de Tecidos Vegetais (LCTV) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a scholarship granted to the first author.

Author information

Authors and Affiliations

Authors

Contributions

LPN participated in the data collection, designed the experiments, data analysis wrote the manuscript, MBM participated in the interpretation, review the article and provided editorial advice; LMS, EA, and CCA provided the plant material, realization of analyses physiological and anatomical interpretation and analyzed data; CU guided every step of the work and participated in the drafting and review of the project and of the article.

Corresponding author

Correspondence to Marciana Bizerra de Morais.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palhares Neto, L., de Souza, L.M., de Morais, M.B. et al. Morphophysiological and Biochemical Responses of Lippia grata Schauer (Verbenaceae) to Water Deficit. J Plant Growth Regul 39, 26–40 (2020). https://doi.org/10.1007/s00344-019-09961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09961-6

Keywords

Navigation