Skip to main content
Log in

Tartaric Acid Mediated Cr Hyperaccumulation and Biochemical alterations in seedlings of Hordeum vulgare L.

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The present study was done to evaluate the effects of tartaric acid (TA) amendment on physiology of Hordeum vulgare L. seedlings under Cr(VI) stress. Cr(VI) at higher concentrations decreased the shoot and root dry weights of seedlings. However, amendment of Cr(VI) media with TA enhanced the root and shoot dry weights, activities of antioxidative enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase, catalase, and glutathione reductase), and contents of pigments (total chlorophyll and carotenoids). Cr(VI) also increased the malondialdehyde content, an indicator of lipid peroxidation and stress. However, application of TA in combination with higher concentrations of Cr(VI) reduced the malondialdehyde content. Amendment of 0.5 mM Cr(VI) with 1.5 mM TA increased the Cr uptake content in the roots of the seedlings by 208.7% with respect to treatment with 0.5 mM Cr(VI) only. The shoot and root bio-concentration factors (BCF) were enhanced with the application of TA to culture media. Further, the results were statistically analyzed by employing various multivariate techniques such as analysis of variance, multiple regression analysis, beta regression analysis, correlation analysis, principal component analysis, factor analysis, non-metric multidimensional scaling, canonical correspondence analysis, and two-block partial least squares. The present study confirmed that TA acts as an antagonist to Cr(VI) in the seedlings of H. vulgare by increasing their antioxidative potential and enhancing their capability of chromium accumulation. The present study also suggests that multivariate techniques, which are mainly applied for data analysis in the field of ecology, can also be applied for experimental biology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol Acad Press 105:12–21

    Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22(15):11679–11689

    CAS  Google Scholar 

  • Ali S, Bharwana SA, Rizwan M, Farid M, Kanwal S, Ali Q, Khan MD (2015) Fulvic acid mediates chromium (Cr) tolerance in wheat (Triticum aestivum L.) through lowering of Cr uptake and improved antioxidant defense system. Environ Sci Pollut Res 22(14):10601–10609

    CAS  Google Scholar 

  • Ali J, Mahmood T, Hayat K, Afridi MS, Ali F, Chaudhary HJ (2018) Phytoextraction of Cr by maize (Zea mays L.). The role of plant growth promoting endophyte and citric acid under polluted soil. Arc Environ Prot 44:73–82

    CAS  Google Scholar 

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C, Roberts JD (1976) Chemical Analysis. In: Chapman SB (ed) Methods in plant ecology. Blackwell Scientific Publications, Oxford, pp 424–426

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1998) Toxicological profile for chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr (VI) by Spirodela polyrrhiza L. Schleiden employing reducing and chelating agents. Int J Phytoremediation 13:465–491

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1975) Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    CAS  PubMed  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Poll 167:73–90

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    CAS  Google Scholar 

  • Daud MK, Mei L, Variath MT, Ali S, Li C, Rafiq MT, Zhu SJ (2014) Chromium (VI) uptake and tolerance potential in cotton cultivars: effect on their root physiology, ultramorphology, and oxidative metabolism. BioMed Res Int. https://doi.org/10.1155/2014/975946

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan X, Wen X, Huang F, Cai Y, Cai K (2016) Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol Plant 38(8):197. https://doi.org/10.1007/s11738-016-2221-8

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Safe 145:90–102

    CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Ahmad T (2018) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Safe 151:255–265

    CAS  Google Scholar 

  • Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud sludge amended soil. J Geochem Explor 182:218–227

    CAS  Google Scholar 

  • Gill RA, Zang L, Ali B, Farooq MA, Cui P, Yang S, Zhou W (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164

    CAS  PubMed  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratao PL, Mazzafera P, Lea PG, Azevedo RA (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    CAS  PubMed  Google Scholar 

  • Govindasamy C, Arulpriya M, Ruban P, Jenifer FL, Ilayaraja A (2011) Concentration of heavy metals in seagrasses tissue of the Palk Strait, Bay of Bengal. Int J Environ Sci 2:145–153

    CAS  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M et al (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    CAS  Google Scholar 

  • Handa N, Kohli SK, Thukral AK, Arora S, Bhardwaj R (2017) Role of Se (VI) in counteracting oxidative damage in Brassica juncea L. under Cr (VI) stress. Acta Physiol Plant 39(2):51

    Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160(6):1085–1093

    PubMed  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662

    CAS  Google Scholar 

  • Kanwar MK, Poonam, Pal S, Bhardwaj R (2015) Involvement of Asada-Halliwell pathway during phytoremediation of chromium (VI) in Brassica juncea L. plants. Int J Phytoremediation 17(12):1237–1243

    CAS  PubMed  Google Scholar 

  • Kaur R, Yadav P, Sharma A, Thukral AK, Kumar V, Kohli SK, Bhardwaj R (2017) Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd (II) toxicity. Ecotoxicol Environ Saf 145:466–475

    CAS  PubMed  Google Scholar 

  • Kaur R, Kaur R, Sharma A, Kumar V, Sharma M, Bhardwaj R, Thukral AK (2018) Microbial production of dicarboxylic acids from edible plants and milk using GC-MS. J Anal Sci Technol 9(1):21. https://doi.org/10.1186/s40543-018-0154-0

    Article  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186(1):189–195

    CAS  PubMed  Google Scholar 

  • Kotaś J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263–283

    PubMed  Google Scholar 

  • Kumar D, Tripathi DK, Chauhan DK (2014) Phytoremediation potential and nutrient status of Barringtonia acutangula Gaerth. Tree seedlings grown under different chromium (CrVI) treatments. Biol Trace Elem Res 157:164–174

    CAS  PubMed  Google Scholar 

  • Kwak S, Yoo JC, Moon DH, Baek K (2018) Role of clay minerals on reduction of Cr (VI). Geoderma 312:1–5

    CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol Acad Press 148:350–382

    CAS  Google Scholar 

  • Linero O, Cidad M, Carrero JA, Nguyen C, de Diego A (2015) Accumulation and translocation of essential and nonessential elements by tomato plants (Solanum lycopersicum) cultivated in open-air plots under organic or conventional farming techniques. J Agric Food Chem 63(43):9461–9470

    CAS  PubMed  Google Scholar 

  • Lu LL, Tian SK, Yang XE, Peng HY, Li TQ (2013) Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid. J Zhejiang Univ Sci B 14(2):106–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Lv C, Xu M, Chen G, Lv C, Gao Z (2016a) Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ Sci Pollut Res 23(2):1768–1778

    CAS  Google Scholar 

  • Ma Q, Cao X, Wu L, Mi W, Feng Y (2016b) Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.). Sci Rep 6:21200. https://doi.org/10.1038/srep21200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel JL (1997) Bioavailability of trace elements to terrestrial plants. - Chap. 6. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. Lewis Publishers, Boca Raton, pp 141–176

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK (2015) Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci 61:1659–1672

    CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61(1):40–47

    CAS  PubMed  Google Scholar 

  • Pütter J (1974) Peroxidases. Methods Enzym Anal 2:685–690

    Google Scholar 

  • Rizwan M, Meunier JD, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016a) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    CAS  Google Scholar 

  • Rizwan M, Ali S, Rizvi H, Rinklebe J, Tsang DC, Meers E, Ok YS, Ishaque W (2016b) Phytomanagement of heavy metals in contaminated soils using sunflower: a review. Crit Rev Environ Sci Technol 46:1498–1528

    CAS  Google Scholar 

  • Rucinska-Sobkowiak R, Pukacki PM (2006) Antioxidative defense system in lupin roots exposed to increasing concentrations of lead. Acta Physiol Plant 28:357–364

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Duschenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    CAS  PubMed  Google Scholar 

  • Shahid MN, Abbasi NA (2011) Effect of beewax coatings on physiological changes in Fruits of sweet orange cv.“blood red”. Sarhad J Agric 27(3):385–394

    Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48(6):689–697

    CAS  Google Scholar 

  • Shahzad B, Tanveer M, Che Z, Rehman A, Cheema SA, Sharma A et al (2018a) Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: a review. Ecotoxicol Environ Saf 147:935–944

    CAS  PubMed  Google Scholar 

  • Shahzad B, Tanveer M, Rehman A, Cheema SA, Fahad S, Rehman S, Sharma A (2018b) Nickel; whether toxic or essential for plants and environment-a review. Plant Physiol Biochem 132:641–651

    CAS  PubMed  Google Scholar 

  • Shakir L, Ejaz S, Ashraf M, Qureshi NA, Anjum AA, Iltaf I, Javeed A (2012) Ecotoxicological risks associated with tannery effluent wastewater. Environ Toxicol Pharmacol 34(2):180–191

    CAS  PubMed  Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T, Abbasi GH (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    PubMed  Google Scholar 

  • Shapiro SS, Wilk MB (1965) Analysis of variance test for normality (complete samples). Biometrika 52: 591-etr. Online version implemented by Simon Dittami (2009)

    Google Scholar 

  • Sharma A, Bhardwaj R, Kumar V, Thukral AK (2016a) GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environ Sci Pollut Res 23(14):14518–14525

    CAS  Google Scholar 

  • Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2016b) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf 133:195–201

    CAS  PubMed  Google Scholar 

  • Sharma A, Kumar V, Thukral AK, Bhardwaj R (2016c) Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L. Indian J Plant Physiol 21(1):70–75

    Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Ahmad P (2016d) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569. https://doi.org/10.3389/fpls.2016.01569

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Kanwar MK, Thukral AK, Bhardwaj R (2017a) Ameliorating imidacloprid induced oxidative stress by 24-epibrassinolide in Brassica juncea L. Russ J Plant Physiol 64(4):509–517

    CAS  Google Scholar 

  • Sharma A, Thakur S, Kumar V, Kesavan AK, Thukral AK, Bhardwaj R (2017b) 24-Epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biol 17(1):56. https://doi.org/10.1186/s12870-017-1003-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Kumar R, Shahzad B, Thukral AK, Bhardwaj R (2018a) Brassinosteroid-mediated pesticide detoxification in plants: a mini-review. Cogent Food Agric 4(1):1436212

    Google Scholar 

  • Sharma A, Kumar V, Yuan H, Kanwar MK, Bhardwaj R, Thukral AK, Zheng B (2018b) Jasmonic acid seed treatment stimulates insecticide detoxification in Brassica juncea L. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01609

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Bhardwaj R, Gautam V, Bali S, Kaur R, Kaur P et al (2018c) Phytoremediation in Waste management: hyperaccumulation diversity and techniques. In: Plants under metal and metalloid stress. Springer, Singapore, pp 277–302

    Google Scholar 

  • Stambulska UY, Bayliak MM, Lushchak VI (2018) Chromium (VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. BioMed Res Int 2018:1–13

    Google Scholar 

  • Tian HZ, Zhu CY, Gao JJ, Cheng K, Hao JM, Wang K, Zhou JR (2015) Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies. Atmos Chem Phys 15(17):10127–10147

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655

    CAS  Google Scholar 

  • Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator and nonaccumulator Commelina communis. Biol Trace Elem Res 143(1):489–499

    CAS  PubMed  Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12

    Google Scholar 

  • Yadav K, Singh NB (2013) Effects of benzoic acid and cadmium toxicity on wheat seedlings. Chil J Agric Res 73(2):168–174

    Google Scholar 

  • Yadav P, Kaur R, Kanwar MK, Sharma A, Verma V, Sirhindi G, Bhardwaj R (2018) Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicol Environ Saf 147:725–734

    CAS  PubMed  Google Scholar 

  • Yıldız M, Terzi H (2016) Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr (VI) tolerance. Ecotoxicol Environ Saf 124:255–266

    PubMed  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    CAS  PubMed  Google Scholar 

  • Zou JH, Wang M, Jiang WS, Liu DH (2006) Effects of hexavalent chromium (VI) on root growth and cell division in root tip cells of Amaranthus viridis L. Pak J Bot 38(3):673

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the University Grants Commission, GOI for providing financial assistance in the form of the major research project and UGC-BSR fellowship to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 207 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Kumar, V., Bhardwaj, R. et al. Tartaric Acid Mediated Cr Hyperaccumulation and Biochemical alterations in seedlings of Hordeum vulgare L.. J Plant Growth Regul 39, 1–14 (2020). https://doi.org/10.1007/s00344-019-09959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09959-0

Keywords

Navigation