Influence of Tomato Plant Mycorrhization on Nitrogen Metabolism, Growth and Fructification on P-Limited Soil

Abstract

The application of mycorrhizal fungi in agricultural soils as bio-fertilizers is going to be established as an agronomic practice for enhancing crop nutrients acquisition and production. In this work, the effects of tomato root colonization by arbuscular mycorrhizal fungus Glomus mosseae, on nitrogen metabolism, fructification and environmental sustainability without P soil fertilization have been studied. At the harvesting fruit stage, the mycorrhizal (M) plants present a significantly higher concentration of mineral nutrients and organic nitrogen compounds. In particular, GLU, GLN, ASP and ASN have risen about 35% more than non-mycorrhizal (NM) plants. Tomato root mycorrhization improved nitrogen metabolism in plants, too by increasing the nitrate reductase and the glutamine synthetase enzymatic activity. Moreover, mycorrhization affects many aspects of vegetative and reproductive growth. In particular, the fruit production turns from inoculated (M) plants into non-inoculated (NM) plants, rising up to 50%.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aissa E, Mougou A, Kouki Khalfallah K (2016) Influence of mycorrhizal inoculation and source of phosphorus on growth and nutrient uptake of pepper (Capsicum annuum L.) in calcareous soil. J New Sci Agric Biotechnol 28:1589–1595

    Google Scholar 

  2. Aldesuquy HS, Ibrahim HA (2000) The role of shikimic acid in regulation of growth, transpiration, pigmentation, photosynthetic activity and productivity of Vigna sinensis plants. Phyton 40:277–292

    CAS  Google Scholar 

  3. Al-Karaki G (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7

    Google Scholar 

  4. Ardakani MR, Mazaheri D, Mafakheri S, Moghaddam A (2011) Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application. Physiol Mol Biol Plants 17:181–192

    PubMed  PubMed Central  Google Scholar 

  5. Arnebrantand K, Soderstrom B (1992) Effect of different fertilizer treatments on ectomycorrhizal colonization potential in two scots pine forests in Sweden. For Ecol Manage 53:77–89

    Google Scholar 

  6. Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  7. Azcón R, Tobar MR (1998) Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa: effect of drought stress. Plant Sci 133:1–8

    Google Scholar 

  8. Azcòn R, Gòmez M, Tobar MR (1992) Effects of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen matabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytol 121:227–234

    Google Scholar 

  9. Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci Plant Nutr. https://doi.org/10.3389/fpls.2013.00426

    Article  Google Scholar 

  10. Balzerque C, Puech-Pages V, Becard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal simbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 625:1049–1060

    Google Scholar 

  11. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    CAS  PubMed  Google Scholar 

  12. Berruti A, Lumini E, Balestrini R, Bianciotto V (2015) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  Google Scholar 

  13. Botton B, Chalot M (1999) Nitrogen assimilation: enzymology in ectomycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 333–372

    Google Scholar 

  14. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Breuninger M, Trujillo CG, Serrano E, Fhisher R, Requena N (2004) Different nitrogen source modulate activity but not expression of glutamine synthetase in arbuscolar fungi. Fungal Genet Biol 41:542–552

    CAS  PubMed  Google Scholar 

  16. Bryla D, Koide R (1998) Mycorrhizal response of two tomato genotypes relates to their ability to acquire and utilize phosphorus. Ann Bot 82:849–857

    Google Scholar 

  17. Bücking H, Kafle A (2015) Review: role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Google Scholar 

  18. Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes, Cph 4. In: Vasanthaiah H (ed) Plants and environment. https://doi.org/10.5772/5257

    Google Scholar 

  19. Calabrese S, Pérez-Tienda J, Ellerbeck M, Arnould C, Chatagnier O, Boller T, Schüßler A, Brachmann A, Wipf D, Nuria Ferrol N, Courty P (2016) GintAMT3—a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis. Front Plant Sci 7:679

    PubMed  PubMed Central  Google Scholar 

  20. Carillo P, Mastronardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32:209–219

    CAS  Google Scholar 

  21. Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis (Second Edition). Edited by M. R. Carter and E. G. Gregorich. Boca Raton, Fl, USA: CRC Press (2004). Exp Agric 44(3):437. https://doi.org/10.1017/S0014479708006546

    Article  Google Scholar 

  22. Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas, exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    CAS  Google Scholar 

  23. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516. https://doi.org/10.3389/fmicb.2017.02516

    Article  PubMed  PubMed Central  Google Scholar 

  24. Copetta A, Bardi L, Bertolone E, Berta G (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145:106–115

    Google Scholar 

  25. Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loucao MA, Jakobsen I (2007) Enzymatic evidence for the key role of argininein nitrogen translocation by arbuscolar mycorrhizal fungi. Plant Physiol 144:782–792

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Martino C, Rigano V, Vona V, Esposito S, Di Martino C, Rigano C (1991) Carbon skeleton sources for ammonium assimilation in N-sufficient and N-limited cells of Cyanidium caldarium (Rhodophyta). J Phycol 27:220–223

    Google Scholar 

  27. Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Google Scholar 

  28. Di Martino C, Pizzuto R, Pallotta ML, De Santis A, Passarella S (2006) Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133

    PubMed  Google Scholar 

  29. Di Martino C, Palumbo G, Vitullo D, Di Santo P, Fuggi A (2018) Regulation of mycorrhiza development in durum wheat by P fertilization: effect on plant nitrogen metabolism. J Plant Nutr Soil Sci. https://doi.org/10.1002/jpln.201700110

    Article  Google Scholar 

  30. Ericsson T (1995) Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil 169:205–214

    Google Scholar 

  31. Fan X, Gordon-Weeks R, Shen Q, Miller AJ (2006) Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. J Exp Bot 57:1333–1340

    CAS  PubMed  Google Scholar 

  32. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012a) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 109:2666–2671

    CAS  PubMed  Google Scholar 

  33. Fellbaum CR, Mensah JA, Philip E, Pfeffer PE, Kiers ET, Bücking H (2012b) The role of carbon in fungal nutrient uptake and transport Implications for resource exchange in the arbuscular mycorrhizal symbiosis. Plant Signal Behav 7:1509–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt M (2004) A Robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell. https://doi.org/10.1105/tpc.104.025973

    Article  PubMed  PubMed Central  Google Scholar 

  35. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  36. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular-mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  37. Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:15–21

    Google Scholar 

  38. Gu M, Xu K, Chen A, Zhu Y, Tang G, Xu G (2010) Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signalling in Solanum lycopersicum. Physiol Plant 138:226–237

    CAS  PubMed  Google Scholar 

  39. Guru V, Tholkappian P, Viswanathan K (2011) Influence of arbuscular mycorrhizal fungi and Azospirillum co-inoculation on the growth characteristics, nutritional content, and yield of tomato crops grown in south India. Indian J Fundam Appl Life Sci 1:84–92

    Google Scholar 

  40. Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. Tansley review. New Phytol 164:243–266

    Google Scholar 

  41. Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23(10):3812–3823. https://doi.org/10.1105/tpc.111.089813

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Hildebrandt U, Katharina J, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57:401–411

    CAS  PubMed  Google Scholar 

  45. Hussain S, Sharif M, Ahmad W, Khan F, Hina Nihar H (2018) Soil and plants nutrient status and wheat growth after mycorrhiza inoculation with and without vermicompost. J Plant Nutr 41:1534–1546

    CAS  Google Scholar 

  46. Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. phosphorus in action biological processes in soil phosphorus cycling. Soil Biol 26:137–168. https://doi.org/10.1007/978-3-642-15271-9_6

    CAS  Article  Google Scholar 

  47. Javot H, PeControletsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. PNAS 104:1720–1725

    CAS  PubMed  Google Scholar 

  48. Jiang Z, Xu C, Huang B (2011) Enzymatic metabolism of nitrogen in leaves and roots of creeping bentgrass under nitrogen deficiency conditions. J Am Soc Hortic Sci 136:320–328

    CAS  Google Scholar 

  49. Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–669

    CAS  PubMed  Google Scholar 

  50. Johansen A, Finlay RD, Olsson PA (1996) Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 133:705–712

    CAS  Google Scholar 

  51. Kaldorf M, Zimmer W, Bothe H (1994) Genetic evidence for the occurrence of assimilatory nitrate reductase in arbuscular-mycorrhizal and other fungi. Mycorrhiza 5:23–28

    CAS  Google Scholar 

  52. Kaldorf M, Schmelzer E, Bothe H (1998) Expression of maize and fungal nitrate reductase genes in arbuscular mycorrhiza. Mol Plant Microbe Interact 11:439–448

    CAS  PubMed  Google Scholar 

  53. Kato K, Okamura Y, Kanahama K, Kanayama Y (2003) Nitrate-independent expression of plant nitrate reductase in Lotus japonicus root nodules. J Exp Bot 54:1685–1690. https://doi.org/10.1093/jxb/erg189

    CAS  Article  PubMed  Google Scholar 

  54. Koide RT, Suomi L, Stevens CM, Mc Cormik L (1998) Interactions between needles of pinus resinosa and ectomycorrhizal fungi. New Phytol 140:539–547

    Google Scholar 

  55. Lam HM, Peng SSY, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106:1347–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and Chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–603

    CAS  Google Scholar 

  57. Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray P, Li X, Zhang J (2016) Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep. https://doi.org/10.1038/srep24902

    Article  PubMed  PubMed Central  Google Scholar 

  58. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the arabidopsis root system. Plant Physiol 129:244–256

    PubMed  PubMed Central  Google Scholar 

  59. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  60. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  61. Merlo L, Ferretti M, Passera C, Ghisi R (1995) Light-modulation of nitrate reductase activity in leaves and roots of maize. Physiol Plant 24:305–311

    Google Scholar 

  62. Navarro RA, Roias P (1984) Determination of ammoniacal and total nitrogen in fertilizers by ammonia-selective electrode. J Assoc Off Anal Chem 67:890–892

    CAS  Google Scholar 

  63. Noctor G, Foyer CH (1999) Homeostasis of adenylate status during photosynthesis in a fluctuating environment. J Exp Bot 51:347–356

    Google Scholar 

  64. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9(3):e90841

    PubMed  PubMed Central  Google Scholar 

  65. Pfautsch S, Bell TL, Gessler (2015) Uptatake, transport and redistribution of amino nitrogen in woody plants, Chap 18. In: D’Mello JPF (ed) Amino acids in higher plant. CABI, Boston, pp 315–339: https://doi.org/10.1079/9781780642635.0315

    Google Scholar 

  66. Pintea A, Bele C, Andrei S, Socaciu C (2003) HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biol Szegediensis 47:37–40

    Google Scholar 

  67. Polacco JC, Todd CD (2011) Ecological aspects of nitrogen metabolism in plants. Wiley, Chichester

    Google Scholar 

  68. Postma JA, Dathe A, Lynch JP (2014) The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability. Plant Physiol 166:590–602

    PubMed  PubMed Central  Google Scholar 

  69. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego, p 605

    Google Scholar 

  70. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    CAS  PubMed  Google Scholar 

  71. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Stout MJ, Brovont RA, Duffey SS (1998) Effect of nitrogen availability on expression of constitutive and induciuble chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol 24:945–963

    CAS  Google Scholar 

  73. Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant Rev 11:58–74

    Google Scholar 

  74. Sundaresan P, Ubalthoose-Raja N, Gunasekaran P, Lakshaman M (1988) Studies on nitrate reduction by VAMfungal spores. Curr Sci 57:84–85

    Google Scholar 

  75. Teste FP, Veneklaas EJ, Dixon KW, Lambers H (2014) Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct Ecol 28:819–828

    Google Scholar 

  76. Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen Flux1[W][OA].. Plant Physiol 153:1175–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot 52:591–604

    CAS  PubMed  Google Scholar 

  78. Treseder KK (2004) A meta-analysis of Mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Google Scholar 

  79. Treseder KK, Allen MF (2002) Direct nitrogen and phosphorous, and atmospheric CO2 in fiel studies. New Phytol 164:347–355

    Google Scholar 

  80. Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi Fusarium oxysporum f. sp. Radices-lycopersici. BioControl 51:393–400

    Google Scholar 

  81. Van Miegroet H (1995) Inorganic nitrogen determined by laboratory and field extractions of two forest soils. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj1995.03615995005900020040x

    Article  Google Scholar 

  82. Van Hees PAW, Jones DL, Jentschke G, Godbold DL (2004) Mobilization of aluminum, iron and silicon by Picea abies and ectomycorrhizas in a forest soil. Eur J Soil Sci 55:101–111

    Google Scholar 

  83. Van Scholl L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    PubMed  Google Scholar 

  84. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    CAS  PubMed  Google Scholar 

  85. Wardlaw IF (1990) Tansley review no. 27. The control of carbon partitioning in plants. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb00524

    Article  Google Scholar 

  86. Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M (2010) Altered xylem–phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. Plant Cell 22:3603–3620

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zubek S, Turnau K, Błaszkowski J (2008) Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Soc Bot Pol 77(2):149–156

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Catello Di Martino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di Martino, C., Fioretto, A., Palmieri, D. et al. Influence of Tomato Plant Mycorrhization on Nitrogen Metabolism, Growth and Fructification on P-Limited Soil. J Plant Growth Regul 38, 1183–1195 (2019). https://doi.org/10.1007/s00344-019-09923-y

Download citation

Keywords

  • Nitrogen-metabolism
  • Mycorrhizal plant
  • Tomato
  • P-limited soil