Skip to main content

Advertisement

Log in

5-Aminolevulinic Acid-Induced Heavy Metal Stress Tolerance and Underlying Mechanisms in Plants

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plants face different types of biotic and abiotic stresses during their life span. Heavy metal (HM) stress is considered as one of the most challenging and emerging threats to sustainable agricultural development and overall economic yield of various plant species. Increasing levels of HMs in arable soils is a main environmental issue due to their deleterious effects on plant growth and productivity. The exogenous application of different plant growth regulators is a well-known strategy to alleviate the adverse effects of HMs stress on plants. In the present review, the role of 5-aminolevulinic acid (ALA) in the alleviation of HM stress in different plants is elaborated. 5-Aminolevulinic acid is identified as a highly efficient ameliorating agent to sustainably neutralize the harmful effects of abiotic stresses in plants. In particular, the role of ALA has been increasingly recognized in improving plant HM stress-tolerance via ALA-mediated control of principal plant-metabolic processes. However, various underlying mechanisms that unravel ALA-induced plant HM stress-tolerance remain unexplored. The application of ALA on HM-stressed plants improves plant height, root length, chlorophyll pigments, antioxidant enzyme activities, nutrient uptake and soluble protein contents and minimizes ultra-structural damage, oxidative stress and HM uptake. Furthermore, it triggers modification of glutathione reductase, ascorbic acid and GSH contents in HM-stressed plants. The lower concentration of ALA proved to be more beneficial in stress amelioration. The cost-effectiveness and efficiency of ALA in improving growth and production of plants under varying growth conditions is still not clear. Nevertheless, over-accumulation of ALA through genetic manipulation can enhance stress-tolerance in plants which is the key area to be investigated. This review article elaborates the potential role of ALA in HM tolerance and highlights the future research dimensions in the related ambits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted with permission from (Akram and Ashraf 2013)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abbas T, Rizwan M, Ali S, Rehman MZ, Qayyum MF, Abbas F, Hannan F, Rinklebe J, Ok YS (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    Article  CAS  PubMed  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Zia-ur-Rehman M, Ibrahim M, Abbas F, Farid M, Qayyum MF, Irshad MK (2015a) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197

    CAS  PubMed  Google Scholar 

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Rehman MZ, Irshad MK, Bharwana SA (2015b) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    CAS  Google Scholar 

  • Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F, Ibrahim M, Mehmood MA, Abbasi GH (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689

    CAS  Google Scholar 

  • Ahmad R, Ali S, Hannan F, Rizwan M, Iqbal M, Hassan Z, Akram NA, Maqbool S, Abbas F (2017) Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.). Environ Sci Pollut Res 9:8814–8824

    Google Scholar 

  • Ahmad P, Abd-Allah EF, Alyemeni MN, Wijaya L, Alam P, Bhardwaj R, Siddique KHM (2018) Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Sci Rep 8:13515

    PubMed  PubMed Central  Google Scholar 

  • Akram NA, Ashraf M (2011a) Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. Agrochimica 55:94–104

    CAS  Google Scholar 

  • Akram NA, Ashraf MU (2011b) Pattern of accumulation of inorganic elements in sunflower (Helianthus annuus L.) plants subjected to salt stress and exogenous application of 5-aminolevulinic acid. Pak J Bot 43:521–530

    CAS  Google Scholar 

  • Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679

    CAS  Google Scholar 

  • Akram NA, Ashraf M, Al-Qurainy F (2012) Aminolevulinic acid-induced changes in some key physiological attributes and activities of antioxidant enzymes in sunflower (Helianthus annuus L.) plants under saline regimes. Sci Hortic 142:143–148

    CAS  Google Scholar 

  • Akram NA, Kausar S, Farid N, Ashraf M, Al-Qurainy F (2018) 5-Aminolevulinic acid induces regulation in growth, yield and physio-biochemical characteristics of wheat under water stress. Sains Malays 47:661–670

    Google Scholar 

  • Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013a) 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environ Sci Pollut Res 20:7256–7267

    CAS  Google Scholar 

  • Ali B, Wang B, Ali S, Ghani MA, Hayat MT, Yang C, Xu L, Zhou WJ (2013b) 5-Aminolevulinic acid ameliorates the growth, photosynthetic gas exchange capacity, and ultrastructural changes under cadmium stress in Brassica napus L. J Plant Growth Regul 32:604–614

    CAS  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod 52:617–626

    CAS  Google Scholar 

  • Ali B, Gill RA, Yang S, Gill MB, Farooq MA, Liu D, Daud MK, Ali S, Zhou W (2015) Regulation of cadmium-induced proteomic and metabolic changes by 5-aminolevulinic acid in leaves of Brassica napus L. PLoS ONE 10:0123328

    Google Scholar 

  • Ali S, Jin R, Gill RA, Mwamba TM, Zhang N, Islam F, Ali S, Zhou W (2018) Beryllium stress-induced modifications in antioxidant machinery and plant ultrastructure in the seedlings of black and yellow seeded oilseed rape. Biomed Res Int 2018:1615968

    PubMed  PubMed Central  Google Scholar 

  • Al-Khateeb SA, Okawara R, Al-Khateebi AA, Al-Abdoulhady IA (2006) Effects of 5-aminolevulinic acid (5-ALA) on fruit yield and quality of date palm CV, Khalas. Arab Gulf J Sci Res 24:7–11

    CAS  Google Scholar 

  • Al-Thabet SS (2006) Promotive effect of 5-aminolevulinic acid on growth and yield of wheat grown under dry conditions. J Agron 5:45–49

    Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn., Blackie, Glasgow, pp 25–34

    Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010a) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29:162–190

    CAS  Google Scholar 

  • Awad MA (2008) Promotive effects of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimatization. Sci Hortic 118:48–52

    CAS  Google Scholar 

  • Azevedo RA, Lea PJ (2005) Preface: toxic metals in plants. Braz J Plant Physiol 17:1–1

    Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2009) Uncommon heavy metals, metalloids and their plant toxicity: a review. In: Organic farming, pest control remediation of soil pollutants, Springer, Dordrecht, pp 275–317

    Google Scholar 

  • Balestrasse KB, Tomaro ML, Batlle A, Noriega GO (2010) The role of 5-aminolevulinic acid in the response to cold stress in soybean plants. Phytochemistry 71:2038–2045

    CAS  PubMed  Google Scholar 

  • Bali S, Kaur P, Kohli PK, Ohri P, Thukral AK, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Sci Total Environ 645:1344–1360

    CAS  PubMed  Google Scholar 

  • Beale SI (1990) Biosynthesis of the tetrapyrrole pigment precursor, δ-aminolevulinic acid, from glutamate. Plant Physiol 93:1273–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beale SI, Castelfranco PA (1974) The biosynthesis of δ-Aminolevulinic acid in higher plants: I. accumulation of δ-aminolevulinic acid in greening plant tissues. Plant Physiol 53:291–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogorad L (1967) Aspects of chloroplast assembly. In: Organizational biosynthesis, Elsevier, Amsterdam, pp 395–418

    Google Scholar 

  • Burnham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of δ-aminolaevulate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castelfranco PA, Jones OT (1975) Protoheme turnover and chlorophyll synthesis in greening barley tissue. Plant Physiol 55:485–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castelfranco PA, Rich PM, Beale SI (1974) The abolition of the lag phase in greening cucumber cotyledons by exogenous δ-aminolevulinic acid. Plant Physiol 53:615–618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty N, Tripathy BC (1990) Expression of 5-amino levulinic acid induced photodynamic damage to the thylakoid membranes in dark sensitized by brief pre-illumination. J Biosci 15:199–204

    CAS  Google Scholar 

  • Cornah JE, Terry MJ, Smith AG (2003) Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci 8:224–230

    CAS  PubMed  Google Scholar 

  • Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radical Biol Med 122:4–20

    Google Scholar 

  • Elrod SL, Jones A, Berka RM, Cherry JR (2000) Cloning of the Aspergillus oryzae 5-aminolevulinate synthase gene and its use as a selectable marker. Curr Genet 38:291–298

    CAS  PubMed  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MI, Ata-Ul-Karim ST, Bukhari SA, Ahmad T (2018) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    CAS  PubMed  Google Scholar 

  • Fu J, Zhou Q, Liu J, Liu W, Wang T, Zhang Q, Jiang G (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Genisel M, Turk H, Dumlupinar R (2017) Exogenous aminolevulinic acid protects wheat seedlings against boron-induced oxidative stress. Rom Biotechnol Lett 22(4):12741–12750

    Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2018) Selenium ameliorates chromium toxicity through modifications in pigment system, antioxidative capacity, osmotic system, and metal chelators in Brassica juncea seedlings. South Afr J Bot 119:1–10

    Google Scholar 

  • Hodgins R, Van Huystee RB (1986) Porphyrin metabolism in chill stressed maize (Zea mays L.). J Plant Physiol 125:325–336

    CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997a) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci Biotech Biochem 61:2025–2028

    CAS  Google Scholar 

  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997b) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22:109–114

    CAS  Google Scholar 

  • Hotta Y, Tanaka T, Luo BS, Takeuchi Y, Konnai M (1998) Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J Pesticide Sci 23:29–33

    CAS  Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Ibrahim M, Jabbar A, Farid M, Ali S, Abbas F (2016) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62:648–662

    CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisc Toxicol 7:60–72

    Google Scholar 

  • Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Shrma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12. https://doi.org/10.3389/fpls.2018.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Jan S, Alyemni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18(1):146

    PubMed  PubMed Central  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  • Jung S, Yang K, Lee DE, Back K (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci 167:789–795

    CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of Silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu. Planta 241:847–860

    CAS  PubMed  Google Scholar 

  • Khan MI, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  • Korkmaz A (2012) Effects of exogenous application of 5-aminolevulinic acid in crop plants. In: Abiotic stress responses plants, Springer, New York, pp 215–234

    Google Scholar 

  • Korkmaz A, Korkmaz Y (2009) Promotion by 5-aminolevulenic acid of pepper seed germination and seedling emergence under low-temperature stress. Sci Hortic 119:98–102

    CAS  Google Scholar 

  • Korkmaz A, Korkmaz Y, Demirkıran AR (2010) Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ Exp Bot 67:495–501

    CAS  Google Scholar 

  • Kumar MA, Chaturvedi S, Söll D (1999) Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana. Phytochemisrty 51:847–851

    CAS  Google Scholar 

  • Li DM, Zhang J, Sun WJ, Li Q, Dai AH, Bai JG (2011) 5-Aminolevulinic acid pretreatment mitigates drought stress of cucumber leaves through altering antioxidant enzyme activity. Sci Hortic 130:820–828

    CAS  Google Scholar 

  • Liu T, Hu X, Zhang J, Zhang J, Du Q, Li J (2018) H2O2 mediates ALA-induced glutathione and ascorbate accumulation in the perception and resistance to oxidative stress in Solanum lycopersicum at low temperatures. BMC Plant Biol 18:34

    PubMed  PubMed Central  Google Scholar 

  • Maruyama-Nakashita A, Hirai MY, Funada S, Fueki S (2010) Exogenous application of 5-aminolevulinic acid increases the transcript levels of sulfur transport and assimilatory genes, sulfate uptake, and cysteine and glutathione contents in Arabidopsis thaliana. Soil Sci Plant Nutr 56:281–288

    CAS  Google Scholar 

  • Memon SA, Hou X, Wang L, Li Y (2009) Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol Plant 31:51–57

    CAS  Google Scholar 

  • Mishra SN, Srivastava HS (1983) Stimulation of nitrate reductase activity by delta amino levulinic acid in excised maize leaves. Experientia 39:1118–1120

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Naeem MS, Jin ZL, Wan GL, Liu D, Liu HB, Yoneyama K, Zhou WJ (2010) 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant Soil 332:405–415

    CAS  Google Scholar 

  • Nishihara E, Takahashi K, Nakata N, Tanaka K, Watanabe K (2001) Effect of 5-aminolevulinic acid (ALA) on photosynthetic rate, hydrogen peroxide content, antioxidant level and active oxygen-scavenging enzymes in spinach (Spinacia oleracea L.). J Japan Soc Hortic Sci 70:346–352

    CAS  Google Scholar 

  • Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J Plant Physiol 160:1085–1091

    CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    CAS  PubMed  Google Scholar 

  • Pattanayak GK, Tripathy BC (2011) Overexpression of protochlorophyllide oxidoreductase C regulates oxidative stress in Arabidopsis. PLoS ONE 6:e26532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perveen SH, Shahbaz M, Ashraf MU (2010) Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. Pak J Bot 42:3073–3081

    CAS  Google Scholar 

  • Perveen SH, Shahbaz M, Ashraf MU (2011) Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 43:2463–2468

    CAS  Google Scholar 

  • Perveen SH, Shahbaz M, Ashraf MU (2012) Changes in mineral composition, uptake and use efficiency of salt stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pak J Bot 44:27–35

    CAS  Google Scholar 

  • Qayyum MF, Rehman MZ, Ali S, Rizwan M, Naeem A, Maqsood MA, Khalid H, Rinklebe J, Ok YS (2017) Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174:515–523

    CAS  PubMed  Google Scholar 

  • Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum MF (2015) Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res 22:16897–16906

    CAS  Google Scholar 

  • Rehman MZ, Rizwan M, Ali S, Fatima N, Yousaf B, Naeem A, Sabir M, Ahmad HR, Ok YS (2016) Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol Environ Saf 133:218–225

    PubMed  Google Scholar 

  • Rehman MZ, Khalid H, Akmal F, Ali S, Rizwan M, Qayyum MF, Iqbal M, Khalid MU, Azhar M (2017) Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ Pollut 227:560–568

    PubMed  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DC, Rehman MZ, Zahir ZA, Rinklebe J, Tack FM, Ok YS (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Rinklebe J, Tsang DCW, Bashir A, Maqbool A, Tack FMG, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631–632:1175–1191

    PubMed  Google Scholar 

  • Rouphael Y, Cardarelli M, Rea E, Colla G (2008) Grafting of cucumber as a means to minimize copper toxicity. Environ Exp Bot 63:49–58

    CAS  Google Scholar 

  • Roy CB, Vivekanandan M (1998) Role of aminolevulinic acid in improving biomass production in Vigna catjung, V. mungo, and V. radiata. Biol Plant 41:211–215

    CAS  Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38:257. https://doi.org/10.1007/s11738-016-2277-2285

    Article  Google Scholar 

  • Sakpirom J, Kantachote D, Nunkaew T, Khan E (2018) Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Res Microbiol 168:266–275

    Google Scholar 

  • Sano S, Granick S (1961) Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J Biol Chem 236:1173–1180

    CAS  PubMed  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    CAS  PubMed  Google Scholar 

  • Senge MO (1993) Recent advances in the biosynthesis and chemistry of the chlorophylls. Photochem Photobiol 57:189–206

    CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? Plant Growth Regul 55:51–64

    CAS  Google Scholar 

  • Shi Z, Tao S, Pan B, Fan W, He XC, Zuo Q, Wu SP, Li BG, Cao J, Liu WX, Xu FL (2005) Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ Pollut 134:97–111

    CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (1995) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Didcot

    Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2008) Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders. Sci Total Environ 390:86–96

    CAS  PubMed  Google Scholar 

  • Sun YP, Zhang ZP, Wang LJ (2009) Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. Photosynthetica 47:347–354

    CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    CAS  PubMed  Google Scholar 

  • Tanaka R, Tanaka A (2011) Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochim Biophys Acta 1807:968–976

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Tanaka A, Tsuji H (1992) Stabilization of apoproteins of light-harvesting chlorophyll-a. Plant Physiol Biochem 30:365–370

    CAS  Google Scholar 

  • Tian T, Ali B, Qin Y, Malik Z, Gill RA, Ali S, Zhou W (2014) Alleviation of lead toxicity by 5-aminolevulinic acid is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. BioMed Res Int 2014:1–11

    Google Scholar 

  • Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    PubMed  PubMed Central  Google Scholar 

  • Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant 121:258–264

    CAS  PubMed  Google Scholar 

  • Wang L, Wb J, Liu H, Liu WQ, Kang L, Hou X (2005) Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J Int Plant Biol 47:1084–1091

    CAS  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Google Scholar 

  • Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul 32:97–101

    Google Scholar 

  • Wu Y, Jin X, Liao W, Hu L, Dawuda MM, Zhao X, Tang Z, Gong T, Yu J (2018) 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front Plant Sci 9:123–128

    Google Scholar 

  • Xiaomeng LI, Li ZH, Qiling SO, CHANG J, Jiabao YE, ZHANG W, Yongling LI, Feng XU (2018) Effects of 5-aminolevulinic acid on the photosynthesis, antioxidant system, and α-bisabolol content of Matricaria recutita. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 46 (2)

  • Xu F, Chang J, Cheng SY, Zhu J, Li LL, Cheng YW (2009) Promotive effect of 5-aminolevulinic acid on the antioxidant system in Ginkgo biloba leaves. Afr J Biotechnol 8:3769–3776

    CAS  Google Scholar 

  • Xu F, Zhu J, Cheng S, Zhang W, Wang Y (2010) Effect of 5-aminolevulinic acid on photosynthesis, yield, nutrition and medicinal values of kudzu (Pueraria phaseoloides). Trop Grasslands 44:260–265

    Google Scholar 

  • Xu L, Ali B, Gill RA, Li L, Zhou W (2015) Alleviation of cadmium toxicity by 5-aminolevulinic acid is related to improved nutrients uptake and lowered oxidative stress in Brassica napus. Int J Agric Biol 18:557–564

    Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    CAS  PubMed  Google Scholar 

  • Yoshida R, Ohta E, Iwai K, Tanaka T, Okada H (2005) Effects of liquid fertilizer containing 5-aminolevulinic acid on thickening growth in tulip bulbs. In Proceedings of the 32nd Annual Meeting of the Plant Growth Regulation Society of America, Newport Beach, California, USA, 24–27 July pp. 91–94

  • Youssef T, Awad MA (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J Plant Growth Regul 27:1–9

    CAS  Google Scholar 

  • Zavgorodnyaya A, Papenbrock J, Grimm (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J 12:169–178

    CAS  PubMed  Google Scholar 

  • Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34

    CAS  Google Scholar 

  • Zhen A, Bie ZL, Huang Y, Liu ZX, Fan ML (2012) Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings. Biol Plant 56:566–570

    CAS  Google Scholar 

Download references

Acknowledgements

The authors want to say thanks to Higher Education Commission (HEC), Pakistan for financial support under HEC Project No.203653/NRPU/R&D/HEC/14/437 and NRPU project No.5634/Punjab/NRPU/R&D/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafaqat Ali.

Ethics declarations

Conflict of interest

All the authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Rizwan, M., Zaid, A. et al. 5-Aminolevulinic Acid-Induced Heavy Metal Stress Tolerance and Underlying Mechanisms in Plants. J Plant Growth Regul 37, 1423–1436 (2018). https://doi.org/10.1007/s00344-018-9875-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9875-y

Keywords

Profiles

  1. Muhammad Rizwan
  2. Abbu Zaid
  3. Muhammad Rizwan Shahid
  4. Saddam Hussain