Skip to main content

Brassinosteroids Regulate Growth in Plants Under Stressful Environments and Crosstalk with Other Potential Phytohormones

Abstract

Brassinosteroids (BRs) are an important group of plant steroidal hormones that are actively involved in a myriad of key growth and developmental processes from germination to senescence. Moreover, BRs are known for their effective role in alleviation of stress-induced changes in normal metabolism via the activation of different tolerance mechanisms. Efforts to improve plant growth through exogenous application of BRs (through different modes such as foliar spray, presowing seed treatment, or through root growing medium) have gained considerable ground world over. It has been widely demonstrated that the exogenous application of BRs to stressed plants imparts the stress tolerance mechanisms. In BR-induced regulation of physio-biochemical processes in plants, interaction (crosstalk) of BRs with other phytohormones has been reported. This crosstalk may fine-tune the effective roles of other hormones in regulating stress tolerance. The multifaceted role of BRs consolidated so far has reflected their immense potential to help plants in counteracting the stress-induced changes. The effects of introgression and up- and down-regulation of BR-related genes reported so far to improve crop productivity have been presented here. Strong evidence exists that BRs are involved in signal transduction particularly in the regulation of the mitogen-activated protein kinase (MAPK) cascade, which in turn is involved in controlled development, cell death, and the perception of pathogen-associated molecular pattern (PAMP) signaling. How far BRs are involved in signal transduction pathways operative under stressful environments has also been comprehensively discussed in this review.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aghdam MS, Mohammadkhani N (2014) Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioproc Technol 7:909–914

    CAS  Google Scholar 

  2. Aghdam MS, Asghari M, Farmani B, Mohayeji M, Moradbeygi H (2012) Impact of postharvest brassinosteroids treatment on PAL activity in tomato fruit in response to chilling stress. Sci Hort 144:116–120

    CAS  Google Scholar 

  3. Ahanger MA, Agarwal RM (2017a) Potassium improves antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma 254:1471–1486

    CAS  PubMed  Google Scholar 

  4. Ahanger MA, Agarwal RM (2017b) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    CAS  PubMed  Google Scholar 

  5. Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. In: Ahmad P, Wani MR (eds) Physiological mechanisms and adaptation strategies in plants under changing environment Volume Ist. Springer, New York, pp 25–56

    Google Scholar 

  6. Ahanger MA, Agarwal RM, Tomar NS, Shrivastava M (2015) Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J Plant Int 10:211–223

    Google Scholar 

  7. Ahanger MA, Moad-Talab N, Abd-Allah EF, Ahmad P, Hajiboland R (2016) Plant growth under drought stress: Significance of mineral nutrients. In Ahmad P. (eds) Water stress and Crop Plants: A sustainable approach Wiley Blackwell, New York 649–668

    Google Scholar 

  8. Ahanger MA, Akram NA, Ashraf M, Alyemni MN, Wijaya L, Ahmad P (2017a) Plant responses to environmental stresses – from gene to biotechnology. Annals Bot (AoB) Plants. https://doi.org/10.1093/aobpla/plx025

    Article  Google Scholar 

  9. Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM (2017b) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23:731–744

    PubMed  PubMed Central  Google Scholar 

  10. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    CAS  PubMed  Google Scholar 

  11. Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  12. Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LSP (2015) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1):e0114571

    PubMed  PubMed Central  Google Scholar 

  13. Ahmad P, Latef AA, Abd_Allah EF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016a) Calcium and potassium supplementation enhanced growth, osmolytes, secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci 7:513

    PubMed  PubMed Central  Google Scholar 

  14. Ahmad P, Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran LSP (2016b) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  15. Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M (2017a) Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Inter 12:429–437

    CAS  Google Scholar 

  16. Ahmad P, Ahanger MA, Egamberdieva D, Alam P, Alyemeni MN, Ashraf M (2017b) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (hg) toxicity. J Plant Growth Regul 37:309–322

    Google Scholar 

  17. Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2018a) Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9810-2

    Article  Google Scholar 

  18. Ahmad P, Ahanger MA, Alam P, Alyemeni MN (2018b) Modification of osmolytes and antioxidant enzymes by 24-epibrassinolide in chickpea seedlings under mercury (Hg) toxicity. J Plant Growth Regul 37:309–322

    CAS  Google Scholar 

  19. Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinumL.). Environ Exp Bot 59:217–223

    CAS  Google Scholar 

  20. Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008a) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    CAS  Google Scholar 

  21. Ali B, Hayat S, Fariduddin Q, Ahmad A (2008b) 24-Epibrassinolide protects against the stress generated by salinity and nickel in. Brassica juncea Chemosphere 72:1387–1392

    CAS  PubMed  Google Scholar 

  22. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    CAS  Google Scholar 

  23. Anuradha S, Rao SSR (2003) Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regul 40:29–32

    CAS  Google Scholar 

  24. Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53:465–472

    CAS  Google Scholar 

  25. Arora P, Bhardwaj R, Kanwar MK (2010a) 24-epibrassinolide regulated diminution of Cr metal toxicity in Brassica juncea L. plants. Braz J Plant Physiol 22:159–165

    Google Scholar 

  26. Arora P, Bhardwaj R, Kanwar MK (2010b) 24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16:285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    CAS  PubMed  Google Scholar 

  28. Bajguz A (2002) Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J Plant Physiol 159:321–324

    CAS  Google Scholar 

  29. Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    CAS  PubMed  Google Scholar 

  30. Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    CAS  PubMed  Google Scholar 

  31. Bajguz A, Piotrowska-Niczyporuk A (2014) Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 80:176–183

    CAS  PubMed  Google Scholar 

  32. Bao F, Shen J, Brady SR, Muday GK, Asami T, Zhenbiao Y (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bar M, Sharfman M, Ron M, Avni A (2010) BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 63:791–800

    CAS  PubMed  Google Scholar 

  34. Behnamnia M (2015) Protective roles of brassinolide on tomato seedlings under drought stress. Int J Agri Crop Sci 8:455–462

    CAS  Google Scholar 

  35. Buer CS, Sukumar P, Muday GK (2006) Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol 140:1384–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ (2016) Transcriptome response mediated by cold stress in Lotus japonicus. Front Plant Sci 7:374. https://doi.org/10.3389/fpls.2016.00374

    Article  PubMed  PubMed Central  Google Scholar 

  37. Campos ML, deAlmeida M, Rossi ML, Martinelli AP, Junior CGL, Figueira A, Rampelotti-Ferreira FT, Vendramim JD, Benedito VA, Peres LEP (2009) Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. J Exp Bot 60:4347–4361

    CAS  PubMed  Google Scholar 

  38. Cao YY, Zhao H (2008) Protective roles of brassinolide in rice seedlings under heat stress. Rice Sci 15:63–68

    Google Scholar 

  39. Cerezoa M, Garcia-Agustina P, Sernab MD, Primo-Millob E (1997) Kinetics of nitrate uptake by Citrus seedlings and inhibitory effects of salinity. Plant Sci 126:105–112

    Google Scholar 

  40. Chaiwanon J, Wang ZY (2015) Spatio-temporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25:1031–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 29:1425–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr(VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    CAS  PubMed  Google Scholar 

  43. Chung Y, Maharjan PM, Lee O, Fujioka S, Jang S, Kim B, Takatsuto S, Tsujimoto M, Kim H, Cho S, Park T, Cho H, Hwang I, Choe S (2011) Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J 66(4):564–578

    CAS  PubMed  Google Scholar 

  44. Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    CAS  PubMed  Google Scholar 

  45. Clouse SD (2015) A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J Plant Growth Regul 34:828–844

    CAS  Google Scholar 

  46. Coban O, Baydar NG (2016) Brassinosteroid effects on some physical and biochemical properties and secondary metabolite accumulation in peppermint (Mentha piperita L.) under salt stress. Ind Crops Prod 86:251–258

    CAS  Google Scholar 

  47. De Vleesschauwer D, Van Buyten E, Satoh K, Balidion J, Mauleon R, Choi IR, Ver-Cruz C, Kikuchi S, Hofte M (2012) Brassinosteroids antagonize gibberellin– and salicylate-mediated root immunity in rice. Plant Physiol 158:1833–1846

    PubMed  PubMed Central  Google Scholar 

  48. Deng XG, Zhu T, Peng XJ, Xi DH, Guo H, Yin Y, Zhang DW, Lin HH (2016) Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana. Sci Rep 6:20576. https://doi.org/10.1038/srep20579

    CAS  Article  Google Scholar 

  49. Dhaubhadel S, Chaudhary KS, Dobinson KF, Krishna P (1999) Treatment of 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342

    CAS  PubMed  Google Scholar 

  50. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29:681–691

    CAS  PubMed  Google Scholar 

  51. Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    PubMed  PubMed Central  Google Scholar 

  52. Divi UK, Rahman T, Krishna P (2016) Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. Plant Biotech J 14:419–432

    CAS  Google Scholar 

  53. El-Mashad AAA, Mohamed HI (2012) Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma 249:625–635

    CAS  PubMed  Google Scholar 

  54. Ernst WHO (1980) Biochemical aspects of cadmium in plants. In: Nriagu JO (ed) Cadmium in the environment, Wiley, New York, pp 639–653

    Google Scholar 

  55. Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    CAS  Google Scholar 

  56. Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-Homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49:55–64

    CAS  Google Scholar 

  57. Fariduddin Q, Khalil RRAE, Mir BA, Yusuf M, Ahmad A (2013) 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environ Monit Assess 185:7845–7856

    CAS  PubMed  Google Scholar 

  58. Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2014) 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica 52:464–474

    CAS  Google Scholar 

  59. Gampala SS, Kim TW, He JX, Tang W, Deng Z, Bai MY, Guan S, Lalonde S, Sun Y, Gendron JM, Chen H, Shibagaki N, Ferl RJ, Ehrhardt D, Chong K, Burlingame AL, Wang ZY (2007) An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell 13:177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gonzalez-Olmedo JL, Cordova A, Aragon CE, Pina D, Rivas M, Rodrıguez R (2005) Effect of an analogue of brassinosteroid on FHIA-18 plantlets exposed to thermal stress. InfoMusa 14:18–20

    Google Scholar 

  61. Greeff C, Roux M, Mundy J, Petersen M (2012) Receptor-like kinase complexes in plant innate immunity. Front Plant Sci 3:209

    PubMed  PubMed Central  Google Scholar 

  62. Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarejko I (2016) Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci 7:1824. https://doi.org/10.3389/fpls.2016.01824

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Poll 151:60–66

    CAS  Google Scholar 

  64. Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    CAS  PubMed  Google Scholar 

  65. Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather Clim Ext 10:4–10

    Google Scholar 

  66. Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  67. Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    CAS  Google Scholar 

  68. Hayat S, Alyemeni M, Hasan S (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu Y, Yu D (2014) BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26:4394–4408

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu WH, Wu Y, Zeng JZ, He L, Zeng QM (2010) Chill-induced inhibition of photosynthesis was alleviated by 24-epibrassinolide pretreatment in cucumber during chilling and subsequent recovery. Photosynthetica 48:537–544

    CAS  Google Scholar 

  71. Hu WH, Yan XH, Xiao YA, Zeng JJ, Qi HJ, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237

    CAS  Google Scholar 

  72. Huang G, Han M, Yao W, Wang Y (2017) Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida. Peer J 5:e3382. https://doi.org/10.7717/peerj.3382

    CAS  Article  PubMed  Google Scholar 

  73. Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    CAS  PubMed  Google Scholar 

  74. Janeczko A, Gullner G, Skoczowski A, Dubert F, Barna B (2007) Effects of brassinosteroid in filtration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol Plant 51:355–358

    CAS  Google Scholar 

  75. Janeczko A, Biesaga-Koscielniak J, Oklestkova J, Filek M, Dziurka M, Szarek-Łukaszewska M, Koscielniak J (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321

    CAS  Google Scholar 

  76. Jatav KS, Agarwal RM, Tomar NS, Tyagi SR (2014) Nitrogen metabolism, growth and yield responses of wheat (Triticum aestivum L.) to restricted water supply and varying potassium treatments. J Indian Bot Soc 93:177–189

    Google Scholar 

  77. Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145

    CAS  PubMed  Google Scholar 

  78. Jin SH, Li XQ, Wang G, Zhu XT (2015) Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants 7:plv009. https://doi.org/10.1093/aobpla/plv009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    CAS  PubMed  Google Scholar 

  80. Kanwar MK, Poonam Bhardwaj R (2015) Arsenic inducted modulation of antioxidative defense system and brassinosteroids in Brassica juncea. L Ecotox Environ Safe 115:119–125

    CAS  Google Scholar 

  81. Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R (2014) 24-epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biochem 10:110–121

    Google Scholar 

  82. Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8:8735

    PubMed  PubMed Central  Google Scholar 

  83. Kazemi-Shahandashti SS, Maali-Amiri R, Zeinali H, Khazaei M, Talei A, Ramezanpour SS (2014) Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J Plant Physiol 171:1106–1116

    CAS  PubMed  Google Scholar 

  84. Kemmerling B, Nurnberger T (2008) Brassinosteroid-independent functions of the BRI1-associated kinase BAK1/SERK3. Plant Sig Beh 3:116–118

    Google Scholar 

  85. Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, Pitzschke A, Teige M, Jonak C, Hirt H, Poppenberger B (2013) Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem 288:7519–7527

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  PubMed  Google Scholar 

  87. Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2011) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422

    Google Scholar 

  88. Kitanaga Y, Jian C, Hasegawa M, Yazaki J, Kishimoto N, Kikuchi S, Nakamura H, Ichikawa H, Asami H, Yoshida S, Yamaguchi I, Suzuki Y (2006) Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Biosci Biotech Biochem 70:2410–2419

    CAS  Google Scholar 

  89. Kocova M, Rothova O, Hola D, Kvasnica M, Kohout L (2010) The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid. Biol Plant 54:785–788

    CAS  Google Scholar 

  90. Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, Nagatani A (2010) Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 153:1608–1618

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Krumova S, Zhiponova M, Dankov K, Velikova V, Balashev K, Andreeva T, Russinova E, Taneva S (2013) Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. J Photochem Photobio B 126:97–104

    CAS  Google Scholar 

  92. Li J (2003) Brassinosteroids signal through two receptor-like kinases. Curr Opin Plant Biol 6:494–499

    CAS  PubMed  Google Scholar 

  93. Li J (2005) Brassinosteroid signaling: from receptor kinases to transcription factors. Curr Opin Plant Biol 8:526–531

    CAS  PubMed  Google Scholar 

  94. Li QF, He JX (2013) Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Sig Behav 8:e24686. https://doi.org/10.4161/psb.24686

    CAS  Article  Google Scholar 

  95. Li QF, Wang C, Jiang L, Sun SS, He JX (2012a) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5(244):ra72. https://doi.org/10.1126/scisignal.2002908

    CAS  Article  PubMed  Google Scholar 

  96. Li YH, Liu YJ, Xu XL, Jin M, An LZ, Zhang H (2012b) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Bio Plant 56:192–196

    Google Scholar 

  97. Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615. https://doi.org/10.3389/fpls.2016.00615

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liu YJ, Zhao ZG, Si J, Di CX, Han J, An LZ (2009) Brassinosteroids alleviate chilling-induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana. Plant Growth Regul 59:207–214

    CAS  Google Scholar 

  99. Liu J, Rowe J, Lindsey K (2014) Hormonal crosstalk for root development: a combined experimental and modeling perspective. Front Plant Sci 5:116. https://doi.org/10.3389/fpls.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu J, Zhang D, Sun X, Ding T, Lei B, Zhang C (2017) Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 124:1–17

    CAS  PubMed  Google Scholar 

  101. Lu XM, Yang W (2013) Alleviation effects of brassinolide on cucumber seedlings under NaCl stress. Ying Yong Sheng Tai Xue Bao 24:1409–1414

    CAS  PubMed  Google Scholar 

  102. Ma Y, Xue H, Zhang L, Zhang F, Ou C, Wang F, Zhang Z (2016) Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus × domestica). Sci Rep 6:26719. https://doi.org/10.1038/srep26719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Hort 3:30. https://doi.org/10.3390/horticulturae3020030

    Article  Google Scholar 

  104. Maharjan PM, Choe S (2011) High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyle elongation in Arabidopsis. J Plant Biol 54:425–429

    CAS  Google Scholar 

  105. Maharjan PM, Schulz B, Choe S (2011) BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J Plant Biol 54:126–134

    CAS  Google Scholar 

  106. Mahesh K, Balaraj P, Ramakrishna B, Rao SSR (2013) Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. Am J Plant Sci 4:2305–2313

    Google Scholar 

  107. Maier F, Zwicker S, Huckelhoven A, Meissner M, Funk J, Pfitzner AJ, Pfitzner UM (2011) NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) and some NPR1-related proteins are sensitive to salicylic acid. Mol Plant Pathol 12:73–91

    CAS  PubMed  Google Scholar 

  108. Mazorra LM, Holton N, Bishop GJ, Nunez M (2011) Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. Plant Physiol Biochem 49:1420–1428

    CAS  PubMed  Google Scholar 

  109. Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P (2013) Overexpression of wssgtl1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis Plants. PLoS ONE 8:e63064. https://doi.org/10.1371/journal.pone.0063064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid and auxin signaling in root growth. Nature 443:458–461

    CAS  PubMed  Google Scholar 

  111. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    CAS  PubMed  Google Scholar 

  112. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59(1):651–681

    CAS  PubMed  Google Scholar 

  113. Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogue S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    CAS  Google Scholar 

  114. Ogweno JO, Hu WH, Song XS, Shi K, Mao WH, Zhou YH, Yu JQ (2010) Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul 60:175–182

    CAS  Google Scholar 

  115. Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E (2011) Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech J 9:747–758

    CAS  Google Scholar 

  116. Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol 53:632–640

    CAS  PubMed  Google Scholar 

  117. Qu T, Liu R, Wang W, An L, Chen T, Liu G, Zhao Z (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63:111–117

    CAS  PubMed  Google Scholar 

  118. Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    CAS  Google Scholar 

  119. Ramakrishna B, Rao SSR (2015) Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252:665–677

    CAS  PubMed  Google Scholar 

  120. Ren C, Han C, Peng W, Huang Y, Peng Z, Xiong X, Zhu Q, Gao B, Xie D (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, Krishna P (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6:28298. https://doi.org/10.1038/srep28298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Saini S, Sharma I, Kaur N, Pati PK (2013) Auxin: a master regulator in plant root development. Plant Cell Rep 32:741–757

    CAS  PubMed  Google Scholar 

  123. Saini S, Sharma I, Pati PK (2015) Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front Plant Sci 6:950. https://doi.org/10.3389/fpls.2015.00950

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shahana T, Rao PA, Ram SS, Sujatha E (2015) Mitigation of drought stress by 24-epibarassinolide and 28-homobrassinolide in pigeon pea seedlings. Int J Multi Curr Res 3:905–911

    Google Scholar 

  125. Shahbaz M, Ashraf M (2007) Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. Pak J Bot 39:513–522

    Google Scholar 

  126. Shakirova FM, Bezrukova M (1998) Effect of 24-epibrassinolide and salinity on the levels of ABA and lectin. Russ J Plant Physiol 45:388–391

    CAS  Google Scholar 

  127. Shakirova FM, Bezrukova MV, Avalbaev AM, Gimalov FR (2002) Stimulation of wheat germ agglutinin gene expression in root seedlings by 24-epibrassinolide. Russ J Plant Physiol 49:225–228

    CAS  Google Scholar 

  128. Sharma P, Bhardwaj R, Arora N, Arora HK (2007) Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Braz J Plant Physiol 19:203–210

    CAS  Google Scholar 

  129. Sharma I, Pati PK, Bhardwaj R (2010) Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress. Indian J Biochem Biophys 47:172–177

    CAS  PubMed  Google Scholar 

  130. Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26

    CAS  PubMed  Google Scholar 

  131. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate – heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Google Scholar 

  132. Shin R, Jez JM, Basra A, Zhang B, Schachtman DP (2011) 14-3-3 Proteins fine-tune plant nutrient metabolism. FEBS Lett 585:143–147

    CAS  PubMed  Google Scholar 

  133. Siboza XI, Bertling I, Odindo AO (2014) Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon). J Plant Physiol 171:1722–1731

    CAS  PubMed  Google Scholar 

  134. Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119

    CAS  Google Scholar 

  135. Singh I, Kumar U, Singh SK, Gupta C, Singh M, Kushwaha SR (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18:229–236

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    CAS  Google Scholar 

  137. Song S, Liu W, Guo S, Shang Q, Zhang Z (2006) Salt resistance and its mechanism of cucumber under effects of exogenous chemical activator. Yingyong Sheng Xuebao 17:1871–1876

    CAS  Google Scholar 

  138. Song YL, Dong YJ, Tian XY, Kong J, Bai XY, Xu LL, He ZL (2016) Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol Plant 60:329–342

    CAS  Google Scholar 

  139. Talaat NB, Shawky BT (2016) Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul 35:518–533

    CAS  Google Scholar 

  140. Talaat NB, Shawky BT, Ibrahim AS (2015) Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58

    CAS  Google Scholar 

  141. Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol 138:1117–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chaiarree W, Pankean P, Suksamrarn A (2015) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53:312–320

    CAS  Google Scholar 

  143. Tong H, Xiao Y, Liu D, Gao S, Liu L, Yin Y, Jin Y, Qian Q, Chu C (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Turkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Google Scholar 

  145. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Upreti KK, Murti GSR (2004) Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biol Plant 48:407–411

    CAS  Google Scholar 

  147. Vandenbussche F, Callebert P, Zadnikova P, Benkova E, VanDer Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100:215–225

    CAS  PubMed  Google Scholar 

  148. Vercruyssen L, Gonzalez N, Werner T, Schmülling T, Inze D (2011) Combining enhanced root and shoot growth reveals crosstalk between pathways that control plant organ size in Arabidopsis. Plant Physiol 155:1339–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang Q, Ding T, Gao L, Pang J, Yang N (2012) Effect of brassinolide on chilling injury of green bell pepper in storage. Sci Hortic 144:195–200

    CAS  Google Scholar 

  150. Xi Z, Wang Z, Fang Y, Hu Z, Hu Y, Deng M, Zhang Z (2013) Effects of 24-epibrassinolide on antioxidantion defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regul 71:57–65

    CAS  Google Scholar 

  151. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Yadava P, Kaushal J, Gautam A, Parmar H, Singh I (2016) Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L.). Nat Sci 8:171–179

    CAS  Google Scholar 

  153. Yang GX, Jan A, Shen SH, Ishikawa JYM, Shimatani Z, Kishimoto N, Matsumoto SKH, Komatsu S (2004) Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol Genet Genom 271:468–478

    CAS  Google Scholar 

  154. Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    CAS  PubMed  Google Scholar 

  155. Yang X, Bai Y, Shang J, Xin R, Tang W (2016) The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ 39:1994–2003

    CAS  PubMed  Google Scholar 

  156. Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, Jiang H, Guo H, Lin HY, Li L, Wang Y, Tong H, Zhang M, Chu C, Li Z, Aluru M, Aluru S, Schnable PS, Yin Y (2017) RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Comm 8:14573. https://doi.org/10.1038/ncomms14573

    CAS  Article  Google Scholar 

  157. Yuan L, Zhua S, Shu S, Sun J, Guo S (2015a) Regulation of 2, 4-epibrassinolide on mineral nutrient uptake and ion distribution in Ca(NO3)2 stressed cucumber plants. J Plant Physiol 188:29–36

    CAS  PubMed  Google Scholar 

  158. Yuan LB, Peng ZH, Zhi TT, Zho Z, Liu Y, Zhu Q, Xiong XY, Ren CM (2015b) Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biol Plant 59:99–105

    CAS  Google Scholar 

  159. Yuldashev R, Avalbaev A, Bezrukova M, Vysotskaya L, Khripach V, Shakirova F (2012) Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physiol Biochem 55:1–6

    CAS  PubMed  Google Scholar 

  160. Yusuf M, Fariduddin Q, Ahmad A (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shot-gun approach. Plant Physiol Biochem 57:143–153

    CAS  PubMed  Google Scholar 

  161. Yusuf M, Fariduddin Q, Ahmad I, Ahmad A (2014) Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiol Mol Biol Plant 20:449–460

    CAS  Google Scholar 

  162. Zhang S, Hu J, Zhang Y, Xie XJ, Knapp A (2007) Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust J Agric Res 58:811–815

    CAS  Google Scholar 

  163. Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548

    CAS  PubMed  Google Scholar 

  164. Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang de A, Qi Y (2014) The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38:638–654

    PubMed  Google Scholar 

  165. Zhao BT, Zhu XF, Jung JH, Xuan YH (2016) Effect of brassinosteroids on ammonium uptake via regulation of ammonium transporter and N-metabolism genes in Arabidopsis. Biol Plant 60:563–571

    CAS  Google Scholar 

  166. Zhou A, Wang H, Walker JC, Li J (2004) BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant J 40:399–409

    CAS  PubMed  Google Scholar 

  167. Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen Y, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65:4371–4383

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhu W, Wang H, Fujioka S, Zhou T, Tian H, Tian W, Wang X (2013) Homeostasis of brassinosteroids regulated by DRL1, a putative acyltransferase in Arabidopsis. Mol Plant 6:546–558

    CAS  PubMed  Google Scholar 

  169. Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H (2016) Ethylene and hydrogen peroxide are involved in brassinosteroid induced salt tolerance in tomato. Sci Rep 6:35392. https://doi.org/10.1038/srep35392

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  170. Zhu J, Li Y, Cao DM, Yang H, Oh E, Bi Y, Zhu S, Wang ZY (2017) The F-box protein KIB1 mediates brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis. Mol Cell 66:648–657

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that no conflict exists among the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahanger, M.A., Ashraf, M., Bajguz, A. et al. Brassinosteroids Regulate Growth in Plants Under Stressful Environments and Crosstalk with Other Potential Phytohormones. J Plant Growth Regul 37, 1007–1024 (2018). https://doi.org/10.1007/s00344-018-9855-2

Download citation

Keywords

  • Brassinosteroids
  • Abiotic stress tolerance
  • Signaling
  • Crosstalk