Cytosine Methylation Analysis of Pinus elliottii × Pinus caribaea var. hondurensis and Their Parental Lines

  • Yiliang Li
  • Fencheng Zhao
  • Xiaohui Yang
  • Suiying Zhong
  • Fuming Li
  • Changming Lin
  • Huishan Wu
  • Wenbing Guo
  • Fangyan Liao
Article
  • 16 Downloads

Abstract

Heterosis is the superiority of hybrids over their parental lines with regard to all kinds of agronomic traits and has been broadly investigated. However, the underlying genetic basis is so far obscure. To figure out the relationship between DNA methylation and heterosis in Pinus, we analyzed the cytosine methylation pattern in Pinus elliottii Englem. × Pinus caribaea var. hondurensis hybrids and their parents using the methylation-sensitive amplified polymorphism (MSAP) method. Our results show that the total DNA methylation levels were not significantly different between hybrids and their parental lines, indicating that heterosis might not be associated with DNA methylation level. Comparison between the elite and poor hybrids shows a different methylation pattern, indicating that readjustment of the DNA methylation pattern might be associated with heterosis. Fragment analysis shows that the RNA methylase (ermBP) gene, which can reactivate gene expression, may play an essential role in hybrid vigor. Our study provides a clue to understand the genetic basis underlying heterosis, which may be important for Pinus breeding in the future.

Keywords

Heterosis Cytosine methylation MSAP Methylation pattern 

Notes

Acknowledgements

This study is supported by Research of Molecular Assistant Breeding for High-yeild Resin Pine in South China (2017B020232001), Forestry Genetic Breeding National Key Laboratory (Chinese Academy of Forestry Sciences) Open Project (TGB2013005), and Special Project for Technological Innovation of Guangdong Province (2016KJCX021).

Supplementary material

344_2018_9804_MOESM1_ESM.docx (33 kb)
Supplementary material 1 (DOCX 32 KB)
344_2018_9804_MOESM2_ESM.doc (32 kb)
Supplementary material 2 (DOC 32 KB)

References

  1. Birchler JA, Yao H, Chudalayandi S et al (2010) Heterosis. Plant Cell 22(7):2105–2112CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32(827):627–628CrossRefPubMedGoogle Scholar
  3. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15(2):57–71CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6(5):351–360CrossRefPubMedGoogle Scholar
  5. Dong ZY, Wang YM, Zhang ZJ et al (2006) Extent and pattern of DNA methylation alteration in rice lines derived from introgressive hybridization of rice and Zizania latifolia Griseb. Theor Appl Genet 113:196–205CrossRefPubMedGoogle Scholar
  6. Fraga MF, Canal MJ, Rodriguez R (2002) Phase-change related epigenetic and physiological changes in Pinus radiata D. Don. Planta 215(4):672–678CrossRefPubMedGoogle Scholar
  7. Frascaroli E, Canè MA, Landi P et al (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176(1):625–644CrossRefPubMedPubMedCentralGoogle Scholar
  8. Groszmann M, Greaves IK, Albertyn ZI et al (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl A Sci USA 108(6):2617–2622CrossRefGoogle Scholar
  9. He G, Elling AA, Deng XW (2011) The epigenome and plant development. Annu Rev Plant Biol 62:411–435CrossRefPubMedGoogle Scholar
  10. Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432CrossRefPubMedGoogle Scholar
  11. Hong Z, Shi JS, Zheng RH, Yang LW, Chen XC, Weng YZ, Huang JH (2009) Epigenetic inheritance and variation of DNA methylation in Chinese fir (Cunninghamia lanceolata) intraspecific hybrids. Mol Plant Breed 7(3):591–598Google Scholar
  12. Hsieh TF, Ibarra CA, Silva P et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324(5933):1451–1454CrossRefPubMedPubMedCentralGoogle Scholar
  13. IBM Corporation (2013) IBM SPSS statistics for windows, version 20.0Google Scholar
  14. Lawrence RJ et al (2004) A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol Cell 13:599–609CrossRefPubMedGoogle Scholar
  15. Li A, Liu C, Han CL, Zhou XC, Chen CB, Song WQ, Wang CG (2012) Variation in cytosine methylation patterns between reciprocal hybrids and their parental in Larix. Acta Sci Nat Univ Nankaiensis 45(5):65–71Google Scholar
  16. Liu TJ, Sun LF, Shan XH, Wu Y, Su SZ, Li SP, Liu HK, Han JY, Yuan YP (2014) Analysis of DNA methylation patterns and levels in maize hybrids and their parents. Genet Mol Res 13(4):8458–8468CrossRefPubMedGoogle Scholar
  17. Lukens LN, Pires JC, Leon E, Vogelzang R et al (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ma KF, Zhang ZY, Wang SQ, Song YP, Zhang DQ (2012) Optimization of MSAP system and preliminary analysis of DNA methylation in Populus tomentosa. J Northeast For Univ 40(12):1–7Google Scholar
  19. Marfil CF, Masuelli RW, Davison J, Comai L (2006) Genomic instability in Solanum tuberosum × Solanum kurtzianum interspecific hybrids. Genome 49:104–113CrossRefPubMedGoogle Scholar
  20. Portis E, Acquadro A, Comino C, Lanteri S (2003) Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci 166:169–178CrossRefGoogle Scholar
  21. Radoev M, Becker HC, Ecke W (2008) Genetic Analysis of Heterosis for Yield and Yield Components in Rapeseed (Brassica napus L.) by Quantitative Trait Locus Mapping. Genetics 179(179):1547–1558CrossRefPubMedPubMedCentralGoogle Scholar
  22. Sakthivel K, Girishkumar K, Ramkumar G, Shenoy VV, Kajjidoni ST, Salimath PM (2010) Alterations in inheritance pattern and level of cytosine DNA methylation, and their relationship with heterosis in rice. Euphytica 175(3):303–314CrossRefGoogle Scholar
  23. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14(4):1163–1175CrossRefPubMedGoogle Scholar
  24. Shen H, He H, Li J et al (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24(3):875–892CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shull GH (1908) The composition of a field of maize. J Hered 4(1):296–301CrossRefGoogle Scholar
  26. Shull GH (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) Heterosis. Iowa State College Press, Lowa, pp 14–48Google Scholar
  27. Tsaftaris AS, Kafka M (1998) Mechanism of heterosis in crop plants. J Crop Prod 1(1):95–111CrossRefGoogle Scholar
  28. Xiao ZZ, Wu SX (2008) Methods of DNA methylation analysis. Chem Life 28(4):489–491Google Scholar
  29. Xiong LZ, Yang GP, Xu CG, Zhang QF, Saghai Maroof MA (1998) Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed 4:129–136CrossRefGoogle Scholar
  30. Zhang M, Xu C, von Wettstein D, Liu B (2011) Tissue-specific differences in cytosine methylation and their association with differential gene expression in sorghum. Plant Physiol 156(4):1955–1966CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zhao XX, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci 172:930–938CrossRefGoogle Scholar
  32. Zhao Y, Yu S, Xing C, Fan S, Song M (2008) Analysis of DNA methylation in cotton hybrids and their parents. J Mol Biol 42(2):195–205Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yiliang Li
    • 1
    • 2
  • Fencheng Zhao
    • 1
    • 2
  • Xiaohui Yang
    • 1
    • 2
  • Suiying Zhong
    • 3
  • Fuming Li
    • 3
  • Changming Lin
    • 3
  • Huishan Wu
    • 1
    • 2
  • Wenbing Guo
    • 1
    • 2
  • Fangyan Liao
    • 1
    • 2
  1. 1.Guangdong Provincial Key Laboratory of Silviculture, Protection and UtilizationGuangzhouChina
  2. 2.Guangdong Academy of ForestryGuangzhouChina
  3. 3.Taishan Hongling Seed OrchardTaishanChina

Personalised recommendations