Journal of Plant Growth Regulation

, Volume 38, Issue 1, pp 14–29 | Cite as

PrMATE1 Is Differentially Expressed in Radiata Pine Exposed to Inclination and the Deduced Protein Displays High Affinity to Proanthocyanidin Substrates by a Computational Approach

  • Luis Morales-Quintana
  • Daniel Bustos
  • Jaime González
  • Daniela C. Urbina
  • Raúl Herrera
  • Patricio RamosEmail author


The response to inclination in plants is an attractive and extensively studied biological process. The most commonly held theory proposes a differential growth in stem tissue due to unequal auxin redistribution. Further evidence proposed that flavonoids act as molecular regulators of auxin distribution or flux. It is well known that flavonoids affect auxin distribution, but how intracellular concentration is controlled during the gravitropic response in woody species is still unknown. The MATE family has been widely studied, however the molecular basis of flavonoids transport is still poorly understood. Here, we identified and characterized a full-length cDNA from radiate pine encoding a putative MATE protein. Transcript abundance analysis showed that PrMATE1 is expressed in a spatial and temporal manner in inclined stems. Additionally, PrMATE1 fused to GFP is mainly localized in the vacuolar membrane. A 3D protein model showed 12 transmembrane helices and an open cavity. The protein–ligand interaction was evaluated; favourable binding affinity energies were obtained and suggested epicatechin 3′-O-glucoside as the best putative ligand. In silico mutagenesis analysis was used to identify five residues as important to protein–ligand interaction. The data provide a dynamic view of interaction between PrMATE1 and their putative ligands at the molecular scale.


MATE transporter Expression profile Molecular modelling Molecular dynamics simulations Pinus radiata Inclination stress 



This work has been supported by PAI/Academia Nº 79140027, FONDECYT N° 11121170, and FONDECYT N° 1150964. PR acknowledges ‘Núcleo Científico Multidisciplinario’ from Universidad de Talca. Authors would like to thank the reviewers for their highly valuable comments.

Compliance with Ethical Standards

Conflict of interest

The authors declares that they have no conflict of interest.

Supplementary material

344_2018_9801_MOESM1_ESM.pdf (3 mb)
Supplementary material 1 (PDF 3117 KB)


  1. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615CrossRefPubMedGoogle Scholar
  2. Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349CrossRefPubMedGoogle Scholar
  3. Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173CrossRefPubMedGoogle Scholar
  5. Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Microbiol 31:394–395CrossRefGoogle Scholar
  6. Burko Y, Geva Y, Refael-Cohen A, Shleizer-Burko S, Shani E, Berger Y, Halon E, Chuck G, Moshelion M, Ori N (2011) From organelle to organ: ZRIZI MATE-type transporter is an organelle transporter that enhances organ initiation. Plant Cell Physiol 52:518–527CrossRefPubMedGoogle Scholar
  7. Debeaujon I, Peeters AJ, Leon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871CrossRefPubMedPubMedCentralGoogle Scholar
  8. Espinoza A, Contreras R, Zúñiga GE, Herrera R, Moya-León MA, Norambuena L, Handford M (2016) FcLDP1, a gene encoding a late embryogenesis abundant (LEA) domain protein, responds to brassinosteroids and abscisic acid during the development of fruits in Fragaria chiloensis. Front Plant Sci 7:788CrossRefPubMedPubMedCentralGoogle Scholar
  9. Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222PubMedPubMedCentralGoogle Scholar
  10. Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R (2011) Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. Plant Biol 13:42–50CrossRefPubMedGoogle Scholar
  11. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J Med Chem 47:1739–1749CrossRefGoogle Scholar
  12. Gagne S, Saucier C, Geny L (2006) Composition and cellular localization of tannins in cabernet sauvignon skins during growth. J Agric Food Chem 54:9465–9471CrossRefPubMedGoogle Scholar
  13. Geisler G, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol 16:50–57CrossRefPubMedGoogle Scholar
  14. Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150:402–415CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gomez R, Gonzalez J, Herrera R, Ramos P (2017) MYB Transcription Factors and a Putative Flavonoid Transporter ABCC-Like are Differentially Expressed in Radiata Pine Seedlings Exposed to Inclination. J Plant Growth Regul 1–12Google Scholar
  16. Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21:273–322CrossRefGoogle Scholar
  17. He X, Szewczyk P, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467:991–994CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hellgren J, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 125:212–220CrossRefGoogle Scholar
  19. Higo K, Ugawa Y, Iwamoto M, Higo H (1998) PLACE: a database of plant cis-acting regulatory DNA elements. NAR 26:358–359CrossRefPubMedGoogle Scholar
  20. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. NAR 35:585–587CrossRefGoogle Scholar
  21. Huang YF, Lemieux MJ, Song JM, Auer M, Wang DN (2003) Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620CrossRefGoogle Scholar
  22. Jorgensen WL, Chandresekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  23. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236CrossRefGoogle Scholar
  24. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  25. Le Provost G, Herrera R, Paiva JA, Chaumeil P, Salin F, Plomion C (2007) A micromethod for high throughput RNA extraction in forest trees. Biol Res 40:291–297CrossRefPubMedGoogle Scholar
  26. Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368CrossRefPubMedGoogle Scholar
  27. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins 79:2794–2812CrossRefPubMedPubMedCentralGoogle Scholar
  28. Love L, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci USA 106:5984–5989CrossRefPubMedGoogle Scholar
  29. Magalhaes JV, Liu J, Guimarães CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161CrossRefPubMedGoogle Scholar
  30. Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, Routaboul JM, Debeaujon I, Klein M (2007) The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell 19:2023–2038CrossRefPubMedPubMedCentralGoogle Scholar
  31. Marrs KA, Alfenito MR, Lloyd AM, Walbot VA (1995) Glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400CrossRefGoogle Scholar
  32. Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightener J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mellerowicz E, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in woody dicot stem. Plant Mol Biol 47:239–274CrossRefPubMedGoogle Scholar
  34. Méndez-Yañez A, Beltrán D, Campano-Romero C, Molinett S, Herrera R, Moya-León MA, Morales-Quintana L (2017) Glycosylation is important for FcXTH1 activity as judged by its structural and biochemical characterization. Plant Physiol Biochem 119:200–210CrossRefPubMedGoogle Scholar
  35. Morales-Quintana L, Fuentes L, Gaete-Eastman C, Herrera R, Moya-León MA (2011) Structural characterization and substrate specificity of VpAAT1 protein related to ester biosynthesis in mountain papaya fruit. J Mol Graph Model 29:635–642CrossRefPubMedGoogle Scholar
  36. Morrison KL, Weiss GA (2001) Combinatorial alanine-scanning. Curr Opin Chem Biol 5:302–307CrossRefPubMedGoogle Scholar
  37. Muday GK (2001) Auxins and tropisms. J Plant Growth Regul 20:226–243CrossRefPubMedGoogle Scholar
  38. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. NAR 8:4321–4326CrossRefPubMedGoogle Scholar
  39. Nawrath C, Heck S, Parinthawong N, Métraux JP (2002) EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. Plant Cell 14:275–286CrossRefPubMedPubMedCentralGoogle Scholar
  40. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593CrossRefGoogle Scholar
  41. Peer WA, Murphy AS (2007) Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci 12:556–563CrossRefPubMedGoogle Scholar
  42. Pérez-Díaz R, Ryngajllo M, Pérez-Díaz J, Peña-Cortés H, Casaretto JA, González-Villanueva E, Ruiz-Lara S (2014) VvMATE1 and VvMATE2 encode putative proanthocyanidin transporters expressed during berry development in Vitis vinifera L. Plant Cell Rep 33:1147–1159CrossRefPubMedGoogle Scholar
  43. Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973CrossRefPubMedPubMedCentralGoogle Scholar
  44. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, Ferrand M, Loudet O, Berthomieu P, Richard O (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120CrossRefPubMedPubMedCentralGoogle Scholar
  46. Plomion C, Pionneau C, Brach J, Costa P, Bailleres H (2000) Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Physiol 123:959–969CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ramos P, Herrera R (2013) Anatomical changes of xylem cells in stem of Pinus radiata seedlings exposed to inclination and ethylene. Biol Plant 57:523–530CrossRefGoogle Scholar
  48. Ramos P, Le Provost G, Plomion C, Gantz C, Herrera R (2012a) Transcriptional analysis of differential expressed genes in response to stem inclination in young seedlings of pine. Plant Biol 14:923–933CrossRefPubMedGoogle Scholar
  49. Ramos P, Valenzuela C, Provost G, Plomion C, Gantz C, Moya-León M, Herrera R (2012b) ACC oxidase and ACC synthase expression profiles after leaning of young radiata (Pinus radiata D. Don) and maritime pine (Pinus pinaster Ait.) seedlings. J Plant Growth Regul 31:382–391CrossRefGoogle Scholar
  50. Ramos P, Guajardo J, Moya-Leon MA, Herrera R (2016) A differential distribution of auxin and flavonols in radiata pine stem seedlings exposed to inclination. Tree Genet Genomes 12:1–13CrossRefGoogle Scholar
  51. Rogers EE, Wu X, Stacey G, Nguyen HT (2009) Two MATE proteins play a role in iron efficiency in soybean. J Plant Physiol 166:1453–1459CrossRefPubMedGoogle Scholar
  52. Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE a plant cis-acting regulatory element database. NAR 27:295–296CrossRefPubMedGoogle Scholar
  53. Savidge RA, Mutumba GMC, Heald JK, Wareing JK (1983) Gas chromatography-mass spectroscopy identification of 1-aminocyclopropane-1-carboxylic acid in compression wood vascular cambium of Pinus contorta Dougl. Plant Physiol 71:434–436CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schrödinger (2015) Schrödinger Release 2015-1: LigPrep. Schrödinger, LLC, New YorkGoogle Scholar
  55. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691CrossRefGoogle Scholar
  56. Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Piml P, Jiang L (2013) Organelle pH in the Arabidopsis endomembrane system. Mol Plant 5:1419–1437CrossRefGoogle Scholar
  57. Shitan N, Yazaki K (2013) New insights into the transport mechanisms in plant vacuoles. Int Rev Cell Mol Biol 305:383–433CrossRefPubMedGoogle Scholar
  58. Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, Omote H, Moriyama Y, Sugiyama A, Goossens A, Moriyasu M, Yazaki K (2014) Involvement of the leaf-specific multidrug and toxic compound extrusion (MATE) transporter Nt-JAT2 in vacuolar sequestration of nicotine in Nicotiana tabacum. PLoS ONE 9:e108789CrossRefPubMedPubMedCentralGoogle Scholar
  59. Smart OS, Neduvelil JG, Wang X, Wallace BA, Sansom MS (1996) HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J Mol Graph 14:354–360CrossRefPubMedGoogle Scholar
  60. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  61. Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plants Sci 4:103–107CrossRefGoogle Scholar
  62. Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8:317–323CrossRefPubMedGoogle Scholar
  63. Telewski F (2006) A unified hypothesis of mechanoperception in plants. Am J Bot 93:1466–1476CrossRefPubMedGoogle Scholar
  64. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11CrossRefGoogle Scholar
  65. Voss NR, Gerstein M, Steitz TA, Moore PB (2006) The geometry of the ribosomal polypeptide exit tunnel. J Mol Biol 360:893–906CrossRefPubMedGoogle Scholar
  66. Went FW (1974) Reflections and speculations. Annu Rev Plant Phys 25:1–26CrossRefGoogle Scholar
  67. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573CrossRefPubMedGoogle Scholar
  68. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yazaki K (2005) Transporters of secondary metabolites. Curr Opin Plant Biol 8:301–307CrossRefPubMedGoogle Scholar
  70. Yin Y, He X, Szewczyk P, Nguyen T, Chang G (2006) Structure of the multidrug transporter EmrD from Escherichia coli. Science 312:741–744CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yin R, Han K, Heller W, Albert A, Dobrev PI, Zažímalová E, Schäffner AR (2014) Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol 201:466–475CrossRefGoogle Scholar
  72. Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20:576–585CrossRefGoogle Scholar
  73. Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhao J, Dixon RA (2010) The ‘ins’ and ‘outs’ of flavonoid transport. Trends Plant Sci 15:72–80CrossRefGoogle Scholar
  75. Zhao J, Huhman D, Shadle G, He XZ, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias BiológicasUniversidad de TalcaTalcaChile
  2. 2.Multidiscipliary Agroindustry Reseach Laboratory, Instituto Ciencias BiomedicasUniversidad Autónoma de ChileTalcaChile
  3. 3.Center for Bioinformatics and Molecular Simulations, Facultad de IngenieríaUniversidad De TalcaTalcaChile

Personalised recommendations