Skip to main content

Genome-Wide Identification and Expression Profiling of Ascorbate Peroxidase (APX) and Glutathione Peroxidase (GPX) Genes Under Drought Stress in Sorghum (Sorghum bicolor L.)

Abstract

APX and GPX are two crucial plant antioxidant enzymes. By protein homology search, nine APX and seven GPX members were identified in Sorghum bicolor genome. They were annotated based on chromosomal localizations as SbAPX1–9 and SbGPX1–7. APXs were distributed on six Sorghum chromosomes and encoded polypeptides of 250–474 residues with characteristic “peroxidase” domain, whereas GPXs were on five chromosomes and encoded proteins of 136–232 residues characterized by a “GSHPx” domain. The first about 1–90 amino acid residues in SbAPXs and about 60–70 amino acid residues in SbGPXs from N-terminus corresponded to transit peptides, and formed the main source of sequence variations. On the other hand, APXs/GPXs appeared to be significantly conserved at the amino acid sequence level. Residues in active and/or metal binding sites of these enzymes were also revealed with inference to their Arabidopsis counterparts. The combined SorghumArabidopsis APX and GPX phylogenies allowed inferring functional roles to putative Sorghum sequences at cross-species level. In digital RNA-seq data from Sorghum, APXs within sensitive genotypes were relatively more responsive to drought compared to GPXs. Differentially upregulated APX4 and downregulated GPX2 suggested that their performance was synergistic. SbAPXs/GPXs expression in drought-exposed sorghum roots and leaves were quantified by Real-Time quantitative PCR (RT-qPCR). Drought-exposed plants morphologically demonstrated reductions in stem/root elongation and size, retardation in plant growth, and erected leaves. Expressions of APXs/GPXs were mostly upregulated in aboveground parts of drought-exposed plants, e.g., leaves while they were downregulated in roots. Furthermore, APX1 and APX5 in leaves, and APX8, APX9, GPX5, and GPX6 in roots showed significant changes in expression levels; therefore, their synergetic regulation during drought should be considered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agusti J, Gimeno J, Merelo P, Serrano R, Cercos M, Conesa A, Talon M, Tadeo FR (2012) Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1. J Exp Bot 63:6079–6091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  3. Aryal UK, Krochko JE, Ross AR (2011) Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 11:425–437

    Article  PubMed  CAS  Google Scholar 

  4. Asif M, Kamran A (2011) Plant breeding for water-limited environments. Crop Sci 51:2911–2912

    Article  Google Scholar 

  5. Attacha S, Solbach D, Bela K, Moseler A, Wagner S, Schwarzländer M, Aller I, Müller SJ, Meyer AJ (2017) Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana. Plant Cell Environ 40:1281–1295

    Article  PubMed  CAS  Google Scholar 

  6. Bela K, Horváth E, Gallé Á, Szabados L, Tari I, Csiszár J (2015) Plant glutathione peroxidases: emerging role of the antioxidant enzymes in plant development and stress responses. J Plant Physiol 176:192–201

    Article  PubMed  CAS  Google Scholar 

  7. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C (2012) Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. Mol Cell Proteomics 11:M111–M015131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence—a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  9. Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  CAS  Google Scholar 

  10. Bray EA, Moses MS, Chung E, Imai R (1996) The role of abscisic acid in the regulation of gene expression during drought stress. In: Grillo S, Leone A (eds) Physical stresses in plants: genes and their products for tolerance. Springer, Berlin, pp 131–139

    Chapter  Google Scholar 

  11. Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  13. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  PubMed  Google Scholar 

  14. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Erfle H, Ventzki R, Voss H, Rechmann S, Benes V, Stegemann J, Ansorge W, Zheng L, Cornel A, Drzonek H et al (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822

    Article  PubMed  Google Scholar 

  16. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613

    Article  CAS  Google Scholar 

  17. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009a) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  18. Farooq M, Wahid A, Lee D, Ito O, Siddique KHM (2009b) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  19. Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167:1066–1075

    Article  PubMed  CAS  Google Scholar 

  20. Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Ann Rev Plant Biol 60:455–484

    Article  CAS  Google Scholar 

  21. Fracasso A, Trindade LM, Amaducci S (2016) Drought stress tolerance strategies revealed by RNA-Seq in two Sorghum genotypes with contrasting WUE. BMC Plant Biol 16:1

    Article  CAS  Google Scholar 

  22. Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions—a review. J Hortic Sci Biotech 86:543–556

    Article  Google Scholar 

  23. Fu JY (2014) Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Bot Stud 55:1–6

    Article  CAS  Google Scholar 

  24. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server, In: John M, Walker (eds) The proteomics protocols handbook. Humana, New York, pp 571–607

    Chapter  Google Scholar 

  25. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  26. Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gonçalves LP, Alves TF, Martins CP, Sousa AO, Santos IC, Pirovani CP, Almeida AF, Coelho Filho MA, Gesteira AS, Filho WS, Girardi EA, Costa MGC (2016) Rootstock-induced physiological and biochemical mechanisms of drought tolerance in sweet orange. Acta Physiol Plant 38:1–12

    Article  CAS  Google Scholar 

  28. Halpin C (2005) Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotech J 3:141–155

    Article  CAS  Google Scholar 

  29. Harb AM, Samarah NH (2015) Physiological and molecular responses to controlled severe drought in two barley (Hordeum vulgare L.) genotypes. J Crop Improv 29:82–94

    Article  CAS  Google Scholar 

  30. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Google Scholar 

  31. Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  PubMed  CAS  Google Scholar 

  32. Islam T, Manna M, Reddy MK (2015) Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS ONE 10:e0143344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  34. Jespersen H, Kjrd I, Stergaard L, Welinder K (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jiang J, Su M, Chen Y, Gao N, Jiao C, Sun Z, Li F, Wang C (2013) Correlation of drought resistance in grass pea (Lathyrus sativus) with reactive oxygen species scavenging and osmotic adjustment. Biologia 68:231–240

    Article  CAS  Google Scholar 

  36. Kieselbach T, Bystedt M, Hynds P, Robinson C, Schröder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  PubMed  CAS  Google Scholar 

  37. Koua D, Cerutti L, Falquet L, Sigrist CJ, Theiler G, Hulo N, Dunand C (2009) PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Res 37:D261–D266

    Article  PubMed  CAS  Google Scholar 

  38. Lazzarotto F, Teixeira FK, Rosa SB, Dunand C, Fernandes CL, de Vasconcelos Fontenele A et al (2011) Ascorbate peroxidase-related (APx-R) is a new heme-containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytol 191:234–250

    Article  PubMed  CAS  Google Scholar 

  39. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotech J 9:661–673

    Article  CAS  Google Scholar 

  40. Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007a) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    Article  PubMed  CAS  Google Scholar 

  41. Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007b) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–598

    Article  PubMed  CAS  Google Scholar 

  42. Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lin X, Kaul S, Rounsley SD, Shea TP, Benito MI, Town CD, Fujii CY, Mason TM, Bowman CL, Barnstead ME, Feldblyum TV, Buell CR, Ketchum KA, Lee JJ, Ronning CM, Koo HL, Moffat KS, Cronin LA et al (1999) Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402:761–768

    Article  PubMed  CAS  Google Scholar 

  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  CAS  Google Scholar 

  46. Mayer K, Schüller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Weitzenegger T (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

    Article  PubMed  CAS  Google Scholar 

  47. Milla MAR, Maurer A, Huete AR, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615

    Article  CAS  Google Scholar 

  48. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  49. Mullineaux PM, Karpinski S, Jiménez A, Cleary SP, Robinson C, Creissen GP (1998) Identification of cDNAs encoding plastid-targeted glutathione peroxidase. Plant J 13:375–379

    Article  PubMed  CAS  Google Scholar 

  50. Munnik T, Testerink C (2009) Plant phospholipid signaling:“in a nutshell”. J Lipid Res 50:S260–S265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Narendra S, Venkataramani S, Shen G, Wang J, Pasapula V, Lin Y, Kornyeyev D, Holaday AS, Zhang H (2006) The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development. J Exp Bot 57:3033–3042

    Article  PubMed  CAS  Google Scholar 

  52. Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  53. Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Osakabe Y, Osakabe K, Shinozaki K, Tran LS (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX, Anjum NA (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  PubMed  PubMed Central  Google Scholar 

  56. Panchuk II, Volkov RA, Schöffl F (2002) Heat stress-and heat shock transcription factor- dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222:926–932

    Article  PubMed  CAS  Google Scholar 

  58. Panchy N, Lehti-Shiu M, Shiu SH (2016) Evolution of gene duplication in plants. Plant Physiol 171:2294–2316

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants 2012:pls014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 97:452–455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Reddy PS, Reddy DS, Sivasakthi K, Bhatnagar-Mathur P, Vadez V, Sharma KK (2016) Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front Plant Sci 7:529

    Google Scholar 

  62. Shin SY, Kim MH, Kim YH, Park HM, Yoon HS (2013) Co-expression of monodehydroascorbate reductase and dehydroascorbate reductase from Brassica rapa effectively confers tolerance to freezing-induced oxidative stress. Molecules cells 36:304–315

    Article  PubMed  CAS  Google Scholar 

  63. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  64. Singh N, Mishra A, Jha B (2014) Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  PubMed  CAS  Google Scholar 

  65. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  66. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL et al (2000) Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408:816–820

    Article  PubMed  Google Scholar 

  68. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015) Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci 6:84

    Article  PubMed  PubMed Central  Google Scholar 

  70. Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES (2016) Genome-wide association for plant height and flowering time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-saharan Africa. Crop Sci 56:2365–2378

    Article  CAS  Google Scholar 

  72. Warren JM, Norby RJ, Wullschleger SD (2011) Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol 31:117–130

    Article  PubMed  Google Scholar 

  73. Xu J, Yang J, Duan X, Jiang Y, Zhang P (2014) Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biol 14:208

    Article  PubMed  PubMed Central  Google Scholar 

  74. Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult 1:99–112

    Article  CAS  Google Scholar 

  75. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  PubMed  CAS  Google Scholar 

  76. Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 8:e57472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mark A. Smedley (John Innes Centre, Norwich, UK) for reviewing the MS in English.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to M. Aydın Akbudak or Ertugrul Filiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 497 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akbudak, M.A., Filiz, E., Vatansever, R. et al. Genome-Wide Identification and Expression Profiling of Ascorbate Peroxidase (APX) and Glutathione Peroxidase (GPX) Genes Under Drought Stress in Sorghum (Sorghum bicolor L.). J Plant Growth Regul 37, 925–936 (2018). https://doi.org/10.1007/s00344-018-9788-9

Download citation

Keywords

  • Drought
  • Antioxidant enzymes
  • ROS
  • Sorghum
  • Gene expression