Skip to main content
Log in

Characterization of the Polyamine Biosynthetic Pathways and Salt Stress Response in Brachypodium distachyon

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

To characterize polyamine (PA) biosynthetic pathways in Brachypodium distachyon, we analyzed the gene-expression patterns and PA contents in various organs. Three major PAs—putrescine (Put), spermidine (Spd), and spermine (Spm)—were detected, but thermospermine (T-Spm) was below the sensitivity limit of high-performance liquid chromatography in all tissues examined, although expression of the ACL5 gene, which is known as the T-Spm synthesis gene, was confirmed. In leaves, Put was the most abundant PA, and its level of accumulation was more than three times greater than those of Spd and Spm. In contrast, the primary PA in other organs was Spd. A high correlation was observed between arginine decarboxylase (ADC) gene-expression patterns and Put contents under normal growth conditions. These results indicate that Put is normally synthesized through the ADC pathway. We also analyzed salt stress responses and confirmed that all PA biosynthesis genes are induced by NaCl treatment. Moreover, Spm highly accumulated under salt stress conditions. Recently, T-Spm was shown to enhance the translation of Arabidopsis SAC51 family mRNAs, at least SAC51 and SACL1, by reducing the inhibitory effect of the conserved upstream open reading frame (uORF). Through database analysis, three and five SAC51 family genes were identified from B. distachyon and Zea mays, respectively. However, these genes are most closely related to SACL3 in Arabidopsis, and the commonly conserved uORF sequence was not confirmed for some of these genes. Therefore, the function of T-Spm in monocotyledonous plant species might be different from that in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cai Q, Fukushima H, Yamamoto M, Ishii N, Sakamoto T, Kurata T, Motose H, Takahashi T (2016) The SAC51 family plays a central role in thermospermine responses in Arabidopsis. Plant Cell Physiol 57:1583–1592

    Article  CAS  PubMed  Google Scholar 

  • Clay NK, Nelson T (2005) Arabidopsis thickvein mutation affects vein thickness and organ vascularization, and resides in a provascular cell-specific spermine synthase involved in vein definition and in polar auxin transport. Plant Physiol 138:767–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomic in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fariduddin Q, Varshney P, Yusuf M, Ahmad A (2013) Polyamines: potent modulators of plant responses to stress. J Plant Interact 8:1–16

    Article  CAS  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2105–2036

    Article  Google Scholar 

  • Hamana K, Matsuzaki S (1985) Distinct difference in the polyamine compositions of Bryophyta and Pteridophyta. J Biochem 97:1595–1601

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000) ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. EMBO J 19:4248–4256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden CA, Jorgensen RA (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes. BMC Biol 5:32. https://doi.org/10.1186/1741-7007-5-32

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112. https://doi.org/10.1186/1471-2229-/8/112

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotech Adv 29:300–311

    Article  CAS  Google Scholar 

  • Imai A, Hanzawa Y, Komura M, Yamamoto KT, Komeda Y, Takahashi T (2006) The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development 133:3575–3585

    Article  CAS  PubMed  Google Scholar 

  • Kakehi J-I, Kuwashiro Y, Niitsu M, Takahashi T (2008) Thermospermine is required for stem elongation in Arabidopsis thaliana. Plant Cell Physiol 49:1342–1349

    Article  CAS  PubMed  Google Scholar 

  • Kakehi J, Kuwashiro Y, Motose H, Igarashi K, Takahashi T (2010) Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana. FEBS Lett 584:3042–3046

    Article  CAS  PubMed  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotech 23:75–83

    Article  CAS  Google Scholar 

  • Kitayama H, Iwamoto K, Kariya Y, Asakawa T, Kan T, Fukuda H, Ohashi-Ito K (2015) A negative feedback loop controlling bHLH complexes is involved in vascular cell division and differentiation in the root apical meristem. Cull Biol 25:3144–3150

    Google Scholar 

  • Knott JM, Römer P, Sumper M (2007) Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine. FEBS lett 581:3081–3086

    Article  CAS  PubMed  Google Scholar 

  • Koc EC, Bagga S, Songstad DD, Betz SR, Kuehn GD, Phillips GC (1998) Occurrence of uncommon polyamines in cultured tissues of maize. In Vitro Cell Dev Biol-Plant 34:252–255

    Article  CAS  Google Scholar 

  • Krishnamurthy R, Bhagwat KA (1989) Polyamine as modulators of salt tolerance in rice cultivars. Plant Physiol 91:500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Yu B-J, Liu Y-L (2006) Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barley roots. Plant Growth Regul 49:119–126

    Article  CAS  Google Scholar 

  • Minocha R, Majumdar R, Minocha SC (2014) Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai MA, Kusano T, Takahashi Y (2010) Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiol Biochem 48:527–533

    Article  CAS  PubMed  Google Scholar 

  • Neily MH, Baldet P, Arfaoui I, Saito T, Li Q-I, Asamizu E, Matsukura C, Moriguchi T, Ezura H (2011) Overexpression of apple sperumidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotech 28:33–42

    Article  CAS  Google Scholar 

  • Pang X-M, Zhang Z-Y, Wen X-P, Ban Y, Moriguchi T (2007) Polyamines, all-purpose players in response to environment stresses in plants. Plant Stress 1:173–188

    Google Scholar 

  • Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Pegg AE, Michael AJ (2010) Spermine synthase. Cell Mol Life Sci 67:113. https://doi.org/10.1007/s00018-009-0165-5

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Garay B, Phillips GC, Kuehn GD (1989) Detection of norspermidine and norspermine in Medicago sativa L. (alfalfa). Plant Physiol 89:525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  CAS  PubMed  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increase polyamine level and enhances sodium chloride-stress. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Takahashi Y (2016) The role of polyamines in plant disease resistance. Environ Control Biol 54:17–21

    Article  CAS  Google Scholar 

  • Takahashi T, Kakehi J-I (2010) Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annal Bot 105:1–6

    Article  CAS  Google Scholar 

  • Takano A, Kakehi J-I, Takahashi T (2012) Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol 53:606–616

    Article  CAS  PubMed  Google Scholar 

  • The International Brichyposium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  CAS  PubMed  Google Scholar 

  • Vera-Sirera F, De Rybel B, Úrbez C, Kouklas E, Pesquera M, Álvarez-Macecha JC, Minguet EG, Tuominen H, Carbonell J, Borst JW, Weijers D, Blázquez MA (2015) A bHLH-based feedback loop restricts vascular cell proliferation in plants. Dev Cell 35:432–443

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Takahashi T (2017) Thermospermine enhances translation of SAC51 and SACL1 in Arabidopsis. Plant Signal Behav 12:e1276685

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank RIKEN BRC for providing the B. distachyon Bd21 seeds. This study was supported in part by a Grant-in-Aid from the Japan Society for the Promotion of Science to YT (16K07607). The manuscript was edited by American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Takahashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 767 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, Y., Tahara, M., Yamada, Y. et al. Characterization of the Polyamine Biosynthetic Pathways and Salt Stress Response in Brachypodium distachyon . J Plant Growth Regul 37, 625–634 (2018). https://doi.org/10.1007/s00344-017-9761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9761-z

Keywords

Navigation