Journal of Plant Growth Regulation

, Volume 37, Issue 2, pp 680–693 | Cite as

Recent Perspectives on Cross Talk Between Cadmium, Zinc, and Arbuscular Mycorrhizal Fungi in Plants

  • Harmanjit Kaur
  • Neera Garg


Soils polluted with heavy metals result into various environmental and ecological tribulations like alterations in microbial community, deterioration of soil, and induction of metals into the human food chain. Noxious heavy metals, for instance, cadmium (Cd) and essential micronutrients like zinc (Zn) have identical chemical properties and are normally taken up by plants via similar carrier proteins as those of indispensable micronutrients. Cohesive interactions between plants and microbes and their co-existence or struggle for survival play a fundamental role in acclimatizing to metal-polluted environments. In this context, arbuscular mycorrhizal (AM) fungi are regarded as a prospective biotechnological approach for increasing tolerance of plants to heavy metal-polluted soils. However, the vital molecular factors responsible for regulating metal homeostasis/balance in these microbes have been poorly understood. Moreover, combined studies assessing the effect of AM fungal inoculation in alleviating Cd and/or Zn toxicity in plants and the underlying mechanisms are still unclear. This review presents the updated information on cross talk between Cd–Zn–AM in plants grown on agricultural and metal-contaminated soils.


Arbuscular mycorrhiza Bioremediation Cadmium Mechanisms Phytotoxicity Zinc 



The authors are grateful to University Grants Commission (UGC), New Delhi, India for providing financial assistance.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akay A, Koleli N (2007) Interaction between cadmium and zinc in barley (Hordeum vulgare L.) grown under field conditions. Bangladesh J Bot 36:13–19Google Scholar
  2. Al-Ghamdi AAM, Jais HM (2012) Interaction between arbuscular mycorrhiza and heavy metals in the rhizosphere and roots of Juniperus procera. Int J Agric Biol 14:69–74Google Scholar
  3. Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S (2011) Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol 11:75PubMedPubMedCentralCrossRefGoogle Scholar
  4. Álvarez-Ayuso E, Otones V, Murciego A, García-Sánchez A, Santa Regina I (2013) Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes. Geoderma 207–208:25–34CrossRefGoogle Scholar
  5. Andrade SAL, Silveira APD, Jorge RA, de Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremed 10:1–14CrossRefGoogle Scholar
  6. Aravind P, Prasad MNV (2005) Cadmium-zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20CrossRefGoogle Scholar
  7. Aravind P, Prasad MNV, Malec P, Waloszek A, Strzalka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 23:50–60PubMedCrossRefGoogle Scholar
  8. Arnetoli M, Vooijs R, Gonnelli C, Gabbrielli R, Verkleij JAC, Schat H (2008) High-level Zn and Cd tolerance in Silene paradoxa L. from a moderately Cd- and Zn-contaminated copper mine tailing. Environ Pollut 156:380–386PubMedCrossRefGoogle Scholar
  9. Arriagada C, Pereira G, Garcia-Romera I, Ocampo JA (2010) Improved zinc tolerance in Eucalyptus globulus inoculated with Glomus deserticola and Trametes versicolor or Coriolopsis rigida. Soil Biol Biochem 42:118–124CrossRefGoogle Scholar
  10. Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J App Innov Eng Manage 5:56–66Google Scholar
  11. Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283PubMedCrossRefGoogle Scholar
  12. Balen B, Tkalec M, Sikic S, Tolic S, Cvjetko P, Pavlica M, Vidakovic-Cifrek Z (2011) Biochemical responses of Lemna minor experimentally exposed to cadmium and zinc. Ecotoxicol 20:815–826CrossRefGoogle Scholar
  13. Bano SA, Ashfaq D (2013) Role of mycorrhiza to reduce heavy metal stress. Nat Sci 5:16–20Google Scholar
  14. Barabasz A, Klimecka M, Kendziorek M, Weremczuk A, Ruszczyńska A, Bulska E, Antosiewicz DM (2016) The ratio of Zn to Cd supply as a determinant of metal homeostasis gene expression in tobacco and its modulation by overexpressing the metal exporter AtHMA4. J Exp Bot 67:6201–6214PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefGoogle Scholar
  16. Benabdellah K, Merlos MA, Azcon-Aguilar C, Ferrol N (2009) GintGRX1, the first characterized glomeromycoton glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103PubMedCrossRefGoogle Scholar
  17. Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:1–8CrossRefGoogle Scholar
  18. Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkauser Verlag, Basel, pp 71–85CrossRefGoogle Scholar
  19. Bhaduri AM, Fulekar MH (2012) Assessment of arbuscular mycorrhizal fungi on the phytoremediation potential of Ipomoea aquatica on cadmium uptake. Biotech 2:193–198Google Scholar
  20. Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837PubMedCrossRefGoogle Scholar
  21. Blaudez D, Chalot M (2011) Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genet Biol 48:496–503PubMedCrossRefGoogle Scholar
  22. Cakmak I, Marschner H (1993) Effect of zinc nutritional status on superoxide radicals and hydrogen peroxide scavenging in bean leaves. In: Barrow NJ (ed) Plants nutrition: from genetic engineering to field practices. Kluwer, Dordrecht, pp 133–137CrossRefGoogle Scholar
  23. Cavusoglu K, Yalcin E, Ergene A (2009) The cytotoxic effects of zinc and cadmium metal ions on root tip cells of Phaseolus vulgaris L. SDU J Sci 4:1–11Google Scholar
  24. Cherif I, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicon). J Environ Sci 23:837–844CrossRefGoogle Scholar
  25. Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S (2010) Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot 106:791–802PubMedPubMedCentralCrossRefGoogle Scholar
  26. Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PM (2015) Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 14:1301–1322PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832PubMedPubMedCentralCrossRefGoogle Scholar
  28. Codex Alimentarius Commission (2001) Report of the Thirty-third session of the codex committee on food additives and contaminants. Joint FAO/WHO Food Standard Program. 20–24 March. HagueGoogle Scholar
  29. Degola F, Fattorini L, Bona E, Sprimuto CT, Argese E, Berta G, Sanita di Toppi L (2015) The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. Plant Physiol Biochem 92:11–18PubMedCrossRefGoogle Scholar
  30. Dhawi F, Datta R, Ramakrishna W (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41PubMedCrossRefGoogle Scholar
  31. Di Vietro L, Daghino S, Abba S, Perotto S (2014) Gene expression and role in cadmium tolerance of two PLAC8-containing proteins identified in the ericoid mycorrhizal fungus Oidiodendron maius. Fungal Biol 118:695–703PubMedCrossRefGoogle Scholar
  32. Dikkaya ET, Ergun N (2014) Effects of cadmium and zinc interactions on growth parameters and activities of ascorbate peroxidase on maize (Zea mays L. MAT 97). European J Exp Biol 4:288–295Google Scholar
  33. Durand TC, Bailiff P, Alberic P, Carpin S, Label P, Hausman JF, Morabito D (2011) Cadmium and zinc are differentially distributed in Populus tremula × P. alba exposed to metal stress. Plant Biosys 145:397–405CrossRefGoogle Scholar
  34. Dürešová Z, Šuňovská A, Horník M, Pipíška M, Gubišová M, Gubiš J, Hostin S (2014) Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chem Pap 68:1452–1462CrossRefGoogle Scholar
  35. Farshian S, Khara J, Malekzadeh P (2007) Influence of arbuscular mycorrhizal fungus (Glomus etunicatum) with lettuce plants under zinc toxicity in nutrient solution. Pak J Biol Sci 10:2363–2367PubMedCrossRefGoogle Scholar
  36. Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F, Pourrut B, Dalpé Y, Grandmougin A, Douay F, Shirali P, Verdin A, Lounès-Hadj Sahraoui A (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527–528:91–99PubMedCrossRefGoogle Scholar
  37. Fontanili L, Lancilli C, Suzui N, Dendena B, Yin YG, Ferri A, Ishii S, Kawachi N, Lucchini G, Fujimaki S, Sacchi GA, Nocito FF (2016) Kinetic analysis of Zinc/cadmium reciprocal competitions suggests a possible Zn-Insensitive pathway for root-to-shoot cadmium translocation in Rice. Rice 9:16PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gadkar V, Rillig M (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263:93–101PubMedCrossRefGoogle Scholar
  39. Gao Y, Cheng Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101:6895–6901PubMedCrossRefGoogle Scholar
  40. Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremed 14:62–74CrossRefGoogle Scholar
  41. Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75:521–534CrossRefGoogle Scholar
  42. Garg N, Kaur H (2012) Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant 34:1363–1380CrossRefGoogle Scholar
  43. Garg N, Kaur H (2013a) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199:118–133CrossRefGoogle Scholar
  44. Garg N, Kaur H (2013b) Impact of Cd-Zn interactions on metal uptake, translocation and yield in Cajanus cajan (L.) Millsp. genotypes colonized by arbuscular mycorrhizal (AM) fungi. J Plant Nutr 36:67–90CrossRefGoogle Scholar
  45. Gharaibeh MA, Albalasmeh A, Marschner B, Saleem Y (2016) Cadmium uptake and translocation of tomato in response to simulated irrigation water containing elevated concentrations of cadmium and zinc in clayey soil. Water Air Soil Pollut 227:133CrossRefGoogle Scholar
  46. Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222PubMedCrossRefGoogle Scholar
  47. Glińska S, Gapińska M, Michlewska S, Skiba E, Kubicki J (2015) Analysis of Triticum aestivum seedling response to the excess of zinc. Protoplasma 253:367–377PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–177CrossRefGoogle Scholar
  49. Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefGoogle Scholar
  50. Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140PubMedCrossRefGoogle Scholar
  51. Gonzalez-Guerrero M, Azcon-Aguilar C, Ferrol N (2006) GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in Glomus intraradices. Abstracts of the 5th International Conference on Mycorrhiza, GranadaGoogle Scholar
  52. Gonzalez-Guerrero M, Cano C, Azcon-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335PubMedCrossRefGoogle Scholar
  53. Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott J, Azcon-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedCrossRefGoogle Scholar
  54. Gonzalez-Guerrero M, Oger E, Benabdellah K, Azcon-Aguilar C, Lanfranco L, Ferrol N (2010) Characterization of a Cu–Zn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Curr Genet 56:265–274PubMedCrossRefGoogle Scholar
  55. González-Guerrero M, Escudero V, Saéz A, Tejada-Jiménez M (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7:1088. doi: 10.3389/fpls.2016.01088 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat cultivars. Physiol Plant 116:73–78PubMedCrossRefGoogle Scholar
  58. Hashem A, Abd Allah EF, Alqarawi AA, Asma A, Huqail A, Egamberdieva D, Wirth S (2016a) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 21:272–281CrossRefGoogle Scholar
  59. Hashem A, Abd Allah EF, Alqarawi AA, Egamberdieva D (2016b) Bioremediation of adverse impact of cadmium toxicity on Cassia italica Mill. by arbuscular mycorrhizal fungi. Saudi J Biol Sci 23:39–47PubMedCrossRefGoogle Scholar
  60. Hassan SED, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483CrossRefGoogle Scholar
  61. Herath D, Weerasinghe A, Bandara D, Wijayawardhana D (2016) Synergistic effect of zinc and cadmium for uptake, accumulation and growth responses in rice (Oryza sativa) varieties. Int J Chem Environ Biol Sci 4:69–73Google Scholar
  62. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139–146CrossRefGoogle Scholar
  63. Holleman A, Wiberg E (1985) Lehrbuch der Anorganischen Chemie. BerlinGoogle Scholar
  64. Hristozkova M, Geneva M, Stancheva I, Boychinova M, Djonova E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. App Soil Ecol 101:57–63CrossRefGoogle Scholar
  65. Hu JL, Wu SC, Wu FY, Leung HM, Lin XG, Wong MH (2013) Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial rye grass (Lolium perenne L.) in a Cd-contaminated acidic soil. Chemosphere 93:1359–1365PubMedCrossRefGoogle Scholar
  66. Huang X, Ho S-H, Zhu S, Ma F, Wu J, Yang J, Wang L (2017) Adaptive response of arbuscular mycorrhizal symbiosis to accumulation of elements and translocation in Phragmites australis affected by cadmium stress. J Environ Manage 197:448–455PubMedCrossRefGoogle Scholar
  67. Javaid A (2011) Importance of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: Khan MS, Zaidi A et al (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 125–141CrossRefGoogle Scholar
  68. Jiang QY, Zhuo F, Long SH, Zhao HI, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Reports 6:21805. doi: 10.1038/srep21805 CrossRefGoogle Scholar
  69. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  70. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 21:197–207CrossRefGoogle Scholar
  71. Kherbani N, Abdi N, Lounici H (2015) Effect of cadmium and zinc on growing barley. J Environ Prot 6:160–172CrossRefGoogle Scholar
  72. Khouja HR, Abbà S, Lacercat-Didier L, Daghino S, Doillon D, Richaud P. Martino E, Vallino M, Perotto S, Chalot M (2013) OmZnT1 and OmFET, two metal transporters from the metal-tolerant strain Zn of the ericoid mycorrhizal fungus Oidiodendron maius, confer zinc tolerance in yeast. Fungal Genet Biol 52:53–64PubMedCrossRefGoogle Scholar
  73. Kleckerova A, Sobrova P, Krystofova O, Sochor J, Zitka O, Babula P (2011) Cadmium (II) and zinc (II) ions effects on maize plants revealed by spectroscopy and electrochemistry. Int J Electrochem Sci 6:6011–6031Google Scholar
  74. Kobayashi R, Yoshimura E (2006) Differences in the binding modes of phytochelatin to cadmium (II) and zinc (II) ions. Biol Trace Elem Res 114:313–318PubMedCrossRefGoogle Scholar
  75. Kodre A, Arcon I, Debeljak M, Potisek M, Likare M, Vogel-Mikuš K (2017) Arbuscular mycorrhizal fungi alter Hg root uptake and ligand environment as studied by X-ray absorption fine structure. Environ Exp Bot 133:12–23CrossRefGoogle Scholar
  76. Kosesakal T, Yuzbasioglu E, Kaplan E, Baris C, Yuzbasioglu S, Belivermis M, Cevahir-Oz G, Unal M (2011) Uptake, accumulation and some biochemical responses in Raphanus sativus L. to zinc stress. Afr J Biotechnol 10:5993–6000Google Scholar
  77. Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLos ONE 10:e0128784. doi: 10.1371/journal.pone.0128784 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Krznaric E, Wevers JHL, Cloquet C, Vangronsveld J, Vanhaecke F, Colpaert JV (2010) Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant Pinus sylvestris. Environ Microbiol 12:2133–2141PubMedGoogle Scholar
  79. Lamb DT, Ming H, Megharaj M, Naidu R (2009) Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J Hazard Mater 171:1150–1158PubMedCrossRefGoogle Scholar
  80. Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a Cu/Zn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137:1319–1330PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79PubMedCrossRefGoogle Scholar
  84. Lee YJ, George E (2005) Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil 278:361–370CrossRefGoogle Scholar
  85. Li Y, Peng J, Shi P, Zhao B (2009) The effect of Cd on mycorrhizal development and enzyme activity of Glomus mosseae and Glomus intraradices in Astragalus sinicus L. Chemosphere 75:894–899PubMedCrossRefGoogle Scholar
  86. Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY, Wong MH, Mo CH (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190PubMedCrossRefGoogle Scholar
  87. Lin YF, Liang HM, Yang SY, Boch A, Clemens S, Chen CC. Wu JF, Huang JL, Yeh KC (2009) Arabidopsis IRT3 is a Zn-regulated and plasma membrane localized Zn/Fe transporter. New Phytol 182:392–404PubMedCrossRefGoogle Scholar
  88. Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447PubMedCrossRefGoogle Scholar
  89. Lone R, Shuab R, Khan S, Ahmad J, Koul KK (2017) Arbuscular mycorrhizal fungi for sustainable agriculture. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health, Springer Nature Singapore Pte Ltd, Singapore. pp 553–577CrossRefGoogle Scholar
  90. Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240. doi: 10.3389/fpls.2015.00240 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918. doi: 10.3389/fpls.2016.00918 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Macek I, Sibanc N, Kavscek M, Lestan D (2016) Diversity of arbuscular mycorrhizal fungi in metal polluted and EDTA washed garden soils before and after soil revitalization with commercial and indigenous fungal inoculums. Ecol Eng 95:330–339CrossRefGoogle Scholar
  93. Mani D, Sharma B, Kumar C (2007) Phytoaccumulation, interaction, toxicity and remediation of cadmium from Helianthus annuus L. (sunflower). Bull Environ Contam Toxicol 79:71–79PubMedCrossRefGoogle Scholar
  94. Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2007) Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Phys Chem Earth 32:1399–1405CrossRefGoogle Scholar
  95. Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2008) Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620PubMedCrossRefGoogle Scholar
  96. Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M (2016) Macroelemental composition of cadmium stressed lettuce plants grown under conditions of intensive sulphur nutrition. J Environ Manage 180:24–34PubMedCrossRefGoogle Scholar
  97. McKenna IM, Chaney RL, Williams FM (1993) The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ Pollut 79:113–120PubMedCrossRefGoogle Scholar
  98. Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  99. Millar N, Bennett AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182:625–641PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ming H, Naidu R, Sarkar B, Lamb DT, Liu Y, Megharaj M, Sparks D (2016) Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268:60–68CrossRefGoogle Scholar
  101. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653PubMedCrossRefGoogle Scholar
  102. Mnasri M, Janouskov M, Rydlova J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 171:476–484PubMedCrossRefGoogle Scholar
  103. Mohammad A, Moheman A (2010) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Arch Agron Soil Sci 56:551–561CrossRefGoogle Scholar
  104. Mongkhonsin B, Nakbanpote W, Hokura A, Nuengchamnong N, Maneechai S (2016) Phenolic compounds responding to zinc and/or cadmium treatments in Gynura pseudochina (L.) DC. extracts and biomass. Plant Physiol Biochem 109:549–560PubMedCrossRefGoogle Scholar
  105. Moreau S, Thompson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Day DA (2002) GmZIP1 encodes a symbiosome-specific zinc transporter in soybean. J Biol Chem 277:4738–4746PubMedCrossRefGoogle Scholar
  106. Nahar K, Hasanuzzaman M, Alam MM, Rahman A, Suzuki T, Fujita M (2016) Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methyl glyoxal detoxification systems. Ecotoxicol Environ Saf 126:245–255PubMedCrossRefGoogle Scholar
  107. Oliver DP, Hannam R, Tiller KG, Wilhelm NS, Merry RH, Cozens GD (1994) The effects of zinc fertilization on cadmium concentrations in wheat grain. J Environ Qual 23:705–711CrossRefGoogle Scholar
  108. Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefGoogle Scholar
  109. Pal M, Horvath E, Janda T, Paldi E, Szalaim G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246CrossRefGoogle Scholar
  110. Prasad MNV, Nakbanpote W, Sebastian A, Panitlertumpai N, Phadermrod C (2015) Phytomanagement of Padaeng zinc mine waste, Mae Sot district, Tak province, Thailand. In: Hakeem K, Sabir M, Ozturk M, Murmet A (eds) Soil remediation and plants: prospects and challenges. Academic Press, London, pp 661–687CrossRefGoogle Scholar
  111. Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from Finger millet (Eleusine coracana L.) in response to mycorrhizal colonization and Pi stress. Biotech 7:17. doi: 10.1007/s13205-017-0609-9 CrossRefGoogle Scholar
  112. Raja S, Cheema HMN, Babar S, Khan AA, Murtaza G, Aslam U (2015) Socio-economic background of wastewater irrigation and bioaccumulation of heavy metals in crops and vegetables. Agri Water Manage 158:26–34CrossRefGoogle Scholar
  113. Rajtor M, Piotrowska-Seget Z (2016) Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere 162:105–116PubMedCrossRefGoogle Scholar
  114. Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rashid A, Jabeen N, Batool A, Ahmad R (2016) Comparison of cadmium and zinc accumulation in onion and radish irrigated with municipal wastewater. J Appl Agric Biotechnol 1:47–53Google Scholar
  116. Repetto O, Massa N, Gianinazzi-Pearson V, Dumas-Gaudot E, Berta G (2007) Cadmium effects on populations of root nuclei in two pea genotypes inoculated or not with the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 17:111–120PubMedCrossRefGoogle Scholar
  117. Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185PubMedCrossRefGoogle Scholar
  118. Saifullah, Javed H, Naeem A, Renge Z, Dahlawi S (2016) Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ Sci Pollut Res 23:16432–16439CrossRefGoogle Scholar
  119. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedPubMedCentralCrossRefGoogle Scholar
  120. Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474CrossRefGoogle Scholar
  121. Sanaeiostovar A, Khoshgoftarmanesh AH, Shariatmadari H (2011) Effects of zinc activity in nutrient solution on uptake, translocation and root export of cadmium and zinc in three wheat genotypes with different zinc efficiencies. Soil Sci Plant Nutr 57:681–690CrossRefGoogle Scholar
  122. Sanità di Toppi L, Castagna A, Andreozzi E, Careri M, Predieri G, Vurro E, Ranieri A (2009) Occurrence of different inter-varietal and inter-organ defence strategies towards supra-optimal zinc concentrations in two cultivars of Triticum aestivum L. Env Exp Bot 66:220–229CrossRefGoogle Scholar
  123. Sankaran RP, Ebbs SD (2008) Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development. Physiol Plant 132:69–78PubMedGoogle Scholar
  124. Saraswat S, Rai JPN (2011) Mechanism of metal tolerance and detoxification in mycorrhizal fungi. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils, series - environmental pollution, Springer Science + Business Media BV, Springer, The Netherlands, vol 20, pp 225–240Google Scholar
  125. Sayed El-Kafafi EL, Rizk AH (2013) Effects of cadmium and combined cadmium-zinc concentrations on rooting and nutrient uptake of cowpea seedlings grown in hydroponic. Am Eurasian J Agric Environ Sci 13:1050–1056Google Scholar
  126. Sharma RK, Agrawal SB (2010) Responses of Abelmoschus esculentus L. (lady’s finger) to elevated levels of Zn and Cd. Tropical Ecol 51:389–396Google Scholar
  127. Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78CrossRefGoogle Scholar
  128. Sharma V, Parmar P, Kumari N (2016) Differential cadmium stress tolerance in wheat genotypes under mycorrhizal association. J Plant Nutr 39:2025–2036CrossRefGoogle Scholar
  129. Shen H, Christie P, Li X (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111–119PubMedCrossRefGoogle Scholar
  130. Shende S, Rai M (2010) Role of mycorrhizal fungi in growth promotion of crop plants. In: Rai M, Kovics G (eds) Progress in mycology, Springer, The Netherlands, pp 259–292CrossRefGoogle Scholar
  131. Siani NG, Fallah S, Pokhrel LR, Rostamnejadi A (2017) Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenum-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin. Plant Physiol Biochem 112:227–238CrossRefGoogle Scholar
  132. Souza JF, Rauser WE (2003) Maize and radish sequester excess cadmium and zinc in different ways. Plant Sci 165:1009–1022CrossRefGoogle Scholar
  133. Stoláriková-Vaculíkováa M, Romeo S, Minnocci A, Luxová M, Vaculík M, Lux A, Sebastiani L (2015) Anatomical, biochemical and morphological responses of poplar Populus deltoides clone Lux to Zn excess. Environ Exp Bot 109:235–243CrossRefGoogle Scholar
  134. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285CrossRefGoogle Scholar
  135. Stravinskienė V, Račaite M (2014) Impact of cadmium and zinc on the growth of white clover (Trifolium repens L.) shoots and roots. Pol J Environ Stud 23:1355–1359Google Scholar
  136. Streit B, Stumm W (1993) Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In: Market B (ed) Plants as bio-monitors: indicators for heavy metals in terrestrial environment. VCH, Weinheim, pp 31–62Google Scholar
  137. Sudova R, Doubkova P, Vosatka M (2008) Mycorrhizal association of Agrostis capillaries and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29CrossRefGoogle Scholar
  138. Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1605–1607PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547. doi: 10.3389/fpls.2014.00547 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tang L, Yao A, Yuan M, Tang Y, Liu J, Liu X, Qiu R (2016) Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 164:190–200PubMedCrossRefGoogle Scholar
  141. Tavarez M, Macri A, Renuka P, Sankaran (2015) Cadmium and zinc partitioning and accumulation during grain filling in two near isogenic lines of durum wheat. Plant Physiol Biochem 97:461–469PubMedCrossRefGoogle Scholar
  142. Tekaya M, Mechri B, Mbarki N, Cheheb H, Hammami M, Attia F (2017) Arbuscular mycorrhizal fungus Rhizophagus irregularis influences key physiological parameters of olive trees (Olea europaea L.) and mineral nutrient profile. Photosynthetica 55:308–316CrossRefGoogle Scholar
  143. Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216CrossRefGoogle Scholar
  144. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tkalec M, Stefanic PP, Cvjetko P, Sikic S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLos ONE 9:e87582. doi: 10.1371/journal.pone.0087582 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal sorghum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172CrossRefGoogle Scholar
  147. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  148. Versieren L, Evers S, Abdelgawad H, Asard H, Smolders E (2017) Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environ Toxicol Chem 36:220–230PubMedCrossRefGoogle Scholar
  149. Vodnik D, Grcman H, Macek I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136PubMedCrossRefGoogle Scholar
  150. Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M (2006) Colonization of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371PubMedCrossRefGoogle Scholar
  151. Wang L, Wu J, Ma F, Yang J, Li S, Li Z, Zhang X (2015) Response of arbuscular mycorrhizal fungi to hydrologic gradients in the rhizosphere of Phragmites australis. (Cav.) Trin ex. Steudel growing in the sun island wetland. BioMed Res Int. doi: 10.1155/2015/810124 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Wang Y, Wang X, Wang C, Wang R, Peng F, Xiao X, Zeng J, Fan X, Kang H, Sha L, Zhang H, Zhou Y (2016) Proteomic profiling of the interactions of Cd/Zn in the roots of dwarf polish wheat (Triticum polonicum L.). Front Plant Sci 7:1378. doi: 10.3389/fpls.2016.01378 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wang Y, Wang X, Wang C, Peng F, Wang R, Xiao X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2017a) Transcriptomic profiles reveal the interactions of Cd/Zn in dwarf polish wheat (Triticum polonicum L.) roots. Front Physiol 8:168 doi: 10.3389/fphys.2017.00168 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang L, Huang X, Ma F, Ho S-H, Wu J, Zhu S (2017b) Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis. Environ Sci Pollut Res 24:3593–3607CrossRefGoogle Scholar
  155. Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungi Glomus intraradices. Mycorrhiza 17:1–10PubMedCrossRefGoogle Scholar
  156. Wei Y, Chen Z, Wu F, Li J, ShangGuan Y, Li F, Zeng QR, Hou H (2015) Diversity of arbuscular mycorrhizal fungi associated with a Sb accumulator plant, Ramie (Boehmeria nivea), in an active Sb Mining. J Microbiol Biotechnol 25:1205–1215PubMedCrossRefGoogle Scholar
  157. Wei Y, Su Q, Sun Z, Shen Y, Li J, Zhu XL, Hou H, Chen ZP, Wu FC (2016) The role of arbuscular mycorrhizal fungi in plant uptake, fractions, and speciation of antimony. Appl Soil Ecol 107:244–250CrossRefGoogle Scholar
  158. Wu F, Zhang G, Dominy P, Wu H, Bachir DML (2007) Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere 70:83–92PubMedCrossRefGoogle Scholar
  159. Wu ZP, McGrouther K, Huang JD, Wu PB, Wu WD, Wang HL (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290CrossRefGoogle Scholar
  160. Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18CrossRefGoogle Scholar
  161. Yang Y, He C, Huang L, Ban Y, Tang M (2017) The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12(8):e0182264. doi: 10.1371/journal.pone.0182264 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zaefarian F, Rezvani M, Rejali F, Ardakani MR, Noormohammadi G (2011) Effect of heavy metals and arbuscular mycorrhizal fungal on growth and nutrients (N, P, K, Zn, Cu and Fe) accumulation of alfalfa (Medicago sativa L.). Am Eurasian J Agric Environ Sci 11:346–352Google Scholar
  163. Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077CrossRefGoogle Scholar
  164. Zhang D, Liu J, Gao J, Shahzad M, Han Z, Wang Z, Li J, Sjolinder H (2014) Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells. PLos ONE 9:e103427. doi: 10.1371/journal.pone.0103427 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of BotanyPanjab UniversityChandigarhIndia

Personalised recommendations