Journal of Plant Growth Regulation

, Volume 37, Issue 2, pp 517–529 | Cite as

RNA Sequence Analysis of Cassava Varieties with High-Starch Content Using De Novo Assembly

  • Ya-Jing Guo
  • Xing-Lu Luo
  • Mao-Gui Wei
  • Zhao-Liang Liu
  • Wu-Jing Fan
  • Rui-Ning Zhai
  • Yan-Mei Zhu


Cassava (Manihot esculenta Crantz) is an important raw material of cassava starch and biological energy worldwide. Among the key traits for crop improvement, elite cassava varieties with high starch content represent a major research target. However, the high genetic heterozygosity of cassava limits its conventional breeding. Identification of novel molecular markers associated with starch biosynthesis facilitates the creation of elite cassava varieties via marker-associated breeding. To increase the number of markers with higher efficiency and stabilization, the transcriptomic profiles of root starch synthesis that were derived from high- and low-starch cassava varieties [Radiation Selection 01 (RS01) and South of China 124 (SC124)] were monitored. More than 292 million reads were deduced by RNA sequencing, which were assembled into 45,007 unigenes. Additionally, 46,925 and 32,421 unigenes from RS01 and SC124, respectively, could be annotated into the Non-redundant protein database, Nucleotide database, Swiss-Prot protein sequence database, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins database (COG), and Gene Ontology (GO) following their assembly. In the different classification systems of COG and GO, 23,172 and 21,835 unigenes had specific protein functions in RS01 and SC124, respectively. In the statistical classification of function in the differential genes in GO, the involved biological processes included metabolic pathways (ko01100), biosynthesis of secondary metabolites (ko01110), ribosome (ko03010), and RNA transportation (ko03013), among others. Several markers and genes associated with high starch traits were developed. These results provide a feasible and effective framework to improve approaches of cassava starch biosynthesis with the intent of creating high-quality cassava species with novel features.


Cassava High-starch content Transcriptome Gene expression Quantitative real-time 



The authors thank the Gene Denovo at Guangzhou for assistance in original data processing and related bioinformatics analysis. The study was supported by the National Grand Fundamental Research 973 Program “cassava starch accumulation of efficient way and key genes” (Grant Number: 2010CB126601), the Key Project of Natural Sciences Fund of Guangxi “Collection of cassava anti-leaf mite germplasm resources, screening and anti-mite gene cloning and functional verification” (Grant Number:SKLCUSA-b201609) and the Key Project of the Natural Sciences Fund of Guangxi “cassava germplasm innovation and breeding” (Grant Number: 2010GXNSFD013025). The authors would like to express their gratitude to Prof. Shiv Tiwari from Stanford University, Stanford, CA, USA for providing valuable comments.

Supplementary material

344_2017_9749_MOESM1_ESM.docx (53 kb)
Supplementary material 1 (DOCX 53 KB)


  1. Altermann E, Klaenhammer TR (2005) Pathway Voyager: pathway mapping using the kyoto encyclopedia of genes and genomes (KEGG) database. BMC Genom 6:60CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389CrossRefPubMedPubMedCentralGoogle Scholar
  3. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995CrossRefPubMedGoogle Scholar
  4. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao YJ, Hirst M, Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM (2009). De novo transcriptome assembly with ABySS. Bioinformatics 25:2872–2877CrossRefPubMedGoogle Scholar
  5. Bredeson JV, Lyons JB, Prochnik SE (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34:562–571CrossRefPubMedGoogle Scholar
  6. Carvalho RD, Guerra M (2002) Cytogenetics of Manihot esculenta Crantz (cassava) and eight related species. Hereditas 136:159–168CrossRefPubMedGoogle Scholar
  7. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev 2:919–929CrossRefGoogle Scholar
  8. Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) A novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34(3):22CrossRefGoogle Scholar
  9. Fregene MA, Suarez M, Mkumbira J, Kulembeka H, Ndedya E, Kulaya A, Mitchel S, Gullberg U, Rosling H, Dixon AGO, Dean R, Kresovich S (2003) Simple sequence repeat marker diversity in cassava landraces: genetic diversity and differentiation in an asexually propagated crop. Theor Appl Genet 107:1083–1093CrossRefPubMedGoogle Scholar
  10. Fu L, Ding Z, Han B, Hu W, Li Y, Zhang J (2016) Physiological investigation and transcriptome analysis of polyethylene glycol (peg)-induced dehydration stress in cassava. Int J Mol Sci 3:17Google Scholar
  11. Ge L (2012) Based on information of the transcriptome lily SSR markers and molecular identification of germplasm research. Chin Acad Agric Sci 6:78–79Google Scholar
  12. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefPubMedPubMedCentralGoogle Scholar
  13. Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Di MJ, Efcavitch JW, Giladi E (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109CrossRefPubMedGoogle Scholar
  14. Jiang B, Xie D, Liu W, Peng Q, He X (2013) De novo assembly and characterization of the transcriptome and development of SSR markers in wax gourd (Benincasa hispida). PLoS ONE 8(8):e71054CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li CY, Deng GM, Yang J (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genom 13:374CrossRefGoogle Scholar
  17. Li L, Shen L, Yang SB, Yan RR (2016) SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 7:12235CrossRefPubMedPubMedCentralGoogle Scholar
  18. Liu F, Wu JB (2016) Transcription profiling analysis of mango mango interaction. Front Plant Sci 7:1443Google Scholar
  19. Liu F, Wang YS, Tian XL, Mao ZC, Zou XX, Xie A (2012) Ssr mining in pepper (Capsicum annuum l.) transcriptome and the polymorphism analysis. Acta Hortic Sinica 1:168–174Google Scholar
  20. Liu F, Wu JB, Zhang RL, Ou XC (2016) Transcription profiling analysis of mango-fusarium mangiferae interaction. Front Microbiol 9:1443Google Scholar
  21. Mattick JS (2005) The functional genomics of noncoding RNA. Science 309:1527–1528CrossRefPubMedGoogle Scholar
  22. Moazed D (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457:413–420CrossRefPubMedPubMedCentralGoogle Scholar
  23. Munyikwa TRI, Langeveld S, Salehuzzaman SNIM, Jacobsen E, Visser RGF (1997) Cassava starch biosynthesis: new avenues for modifying starch quantity and quality. Euphytica 96(1):65–75CrossRefGoogle Scholar
  24. Orshinsky AM, Jinnan H, Opiyo SO, Reddyvari Channarayappa V, Mitchell TK, Boehm MJ (2012) RNA-seq analysis of the Sclerotinia homoeocarpa—creeping bentgrass pathosystem. PLoS ONE 7(8):e41150CrossRefPubMedPubMedCentralGoogle Scholar
  25. Richard C, Aaron L, Matthew P, Gernandt DS, Rongkun S (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:122CrossRefGoogle Scholar
  26. Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compound. BMC Genom 12:131CrossRefGoogle Scholar
  27. Simon P, Pradeep RM, Brian D, Pablo DR, Chinnappa K, Mohammed M, Fausto R, Claude F, Joseph T, Timothy H, Daniel SR, Steve R (2012) The Cassava genome: current progress, future directions. Trop Plant Biol 5:88–94CrossRefGoogle Scholar
  28. Siqueira MVBM, Pinheiro TT, Borges A, Valle TL, Zatarim M, Veasey EA (2010) Microsatellite polymorphisms in cassava landraces from the Cerrado biome, Mato Grosso do sul. Biochem Genet 48:879–895CrossRefPubMedGoogle Scholar
  29. Thomas RK, Nickerson E, Simons JF, Jänne P, Tengs T, Yuza Y, Garraway LA, LaFramboise T, Lee JC, Shah K, O’Neill K (2006) Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med 12(7):852–855CrossRefPubMedGoogle Scholar
  30. Wang L, Wei K, Zhang CC (2014a) Tea tree flower transcriptome microsatellite distribution. J Crops 40:80–85Google Scholar
  31. Wang W, Feng B, Xiao J (2014b) Cassava genome from a wild ancestor to cultivated varieties. Nat Commun 10(5):5110–5110CrossRefGoogle Scholar
  32. Wu S, Li RW, Li W, Li C (2012) Transcriptome Characterization by RNA-seq Unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells. PLoS ONE 7:e36940CrossRefPubMedPubMedCentralGoogle Scholar
  33. Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77(3):299–308CrossRefPubMedGoogle Scholar
  34. Xia H, Zhao CZ, Hou L (2013) Transcriptome profiling of peanut gynophores revealed global reprogramming of gene expression during early pod development in darkness. BMC Genom 14:517CrossRefGoogle Scholar
  35. Xu J (2011) Cassava starch related enzyme gene cloning and expression analysis of time and space. Guangxi University, NanningGoogle Scholar
  36. Xu H, Gao Y, Wang J (2012) Transcriptome analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS ONE 7:e30646CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yang J, An D, Zhang P (2011) Expression profiling of cassava storage roots reveals an active process of glycolysis. Integr Plant Biol 53(3):193–211CrossRefGoogle Scholar
  38. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:239CrossRefGoogle Scholar
  39. Yuan YY, Wang QF, Chen JM (2013) Development of SSR makers in aquatic plant Nymphoides peltata (Menyanthaceae) based on information from transcriptome sequencing. J Plant Sci 31(5):485–492CrossRefGoogle Scholar
  40. Zhai L, Xu L, Wang Y, Cheng H, Chen Y, Gong Y, Liu L (2014) Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.). Mol Breed 33(3):611–624CrossRefGoogle Scholar
  41. Zhang HY, Wei LB, Miao HM, Zhang T, Wang C (2012) Development and validation of genic-SSR markers in sesame by RNA-sEq. BMC Genom 13:316CrossRefGoogle Scholar
  42. Zhang HF, Li H, Xia HQ, Wang HC (2016) Morphological characterization and gene expression profiling during bud development in a tropical perennial, Litchi chinensis Sonn. Front Plant Sci 7:1517PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ya-Jing Guo
    • 1
    • 2
  • Xing-Lu Luo
    • 1
    • 3
  • Mao-Gui Wei
    • 1
  • Zhao-Liang Liu
    • 4
  • Wu-Jing Fan
    • 5
  • Rui-Ning Zhai
    • 6
  • Yan-Mei Zhu
    • 1
  1. 1.Agricultural College of Guangxi UniversityNanningChina
  2. 2.Guangxi Crops Genetic Improvement and Biotechnology LabNanningChina
  3. 3.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresourcesNanningChina
  4. 4.Institute of Horticultural SciencesJiangxi Academy of Agricultural SciencesNanchangChina
  5. 5.Guangxi Academy of Agricultural SciencesNanningChina
  6. 6.Maize Research InstituteGuangxi Academy of Agriculture ScienceNanningChina

Personalised recommendations