Advertisement

Journal of Plant Growth Regulation

, Volume 37, Issue 2, pp 403–418 | Cite as

Effect of Cytokinin and Auxin Treatments on Morphogenesis, Terpenoid Biosynthesis, Photosystem Structural Organization, and Endogenous Isoprenoid Cytokinin Profile in Artemisia alba Turra In Vitro

  • Kalina Danova
  • Vaclav Motyka
  • Milka Todorova
  • Antoaneta Trendafilova
  • Sashka Krumova
  • Petre Dobrev
  • Tonya Andreeva
  • Tsvetelina Oreshkova
  • Stefka Taneva
  • Ljuba Evstatieva
Article

Abstract

Developmental pattern modification in essential oil bearing Artemisia alba Turra was obtained by exogenous plant growth regulator (PGRs) treatments in vitro. Enhanced rooting (in PGR-free and auxin-treated plants) led to elevation of the monoterpenoid/sesquiterpenoid ratio in the essential oils of aerials. On the contrary, root inhibition and intensive callusogenesis [combined cytokinin (CK) and auxin treatments] reduced this ratio more than twice, significantly enhancing sesquiterpenoid production. Both morphogenic types displayed sesquiterpenoid domination in the underground tissues, which however differed qualitatively from the sesquiterpenoids of the aerials, excluding the hypothesis of their shoot-to-root translocation and implying the possible role of another signaling factor, affecting terpenoid biosynthesis. Inhibited rooting also resulted in a significant drop of endogenous isoprenoid CK bioactive-free bases and ribosides as well as CK N-glycoconjugates and in decreased trans-zeatin (transZ):cis-zeatin (cisZ) ratio in the aerials. Marked impairment of the structural organization of the photosynthetic apparatus and chloroplast architecture were also observed in samples with suppressed rooting. It is well known that in the plant cell monoterpenoid and transZ-type CKs biogenesis are spatially bound to plastids, while sesquiterpenoid and cisZ production are compartmented in the cytosol. In the present work, interplay between the biosynthesis of terpenoids and CK bioactive free bases and ribosides in A. alba in vitro via possible moderation of chloroplast structure has been hypothesized.

Keywords

Artemisia alba Turra in vitro Cis- and trans-zeatin Endogenous cytokinins Photosystem II and thylakoid morphology Plant growth regulators Terpenoid profile of the essential oil 

Notes

Acknowledgements

We are thankful to the Swiss Enlargement Contribution in the framework of the Bulgarian-Swiss Research Programme (BSRP, Grant Nos. IZEBZ0_142989; DO2-1153) and Dr. Evelyn Wolfram for PhytoBalk project coordination, the Joint Scientific Research Project between the CAS and BAS (Reg. No. 17-17); the Czech Science Foundation (16-14649S) and we are very grateful to Prof Alessandra Braca for critical reading of the manuscript and complex revision of the scientific English.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

344_2017_9738_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 KB)

References

  1. Adams RP (2009) Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed. Allured Busin. Med., Carol StreamGoogle Scholar
  2. Albertsson PÅ (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci 6:349–354CrossRefPubMedGoogle Scholar
  3. Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180CrossRefPubMedGoogle Scholar
  4. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bajaj YPS, Furmanowa M, Olszowska O (1988) Biotechnology of the micropropagation of medicinal and aromatic plants. In: Bajaj YPS (eds) Biotechnology in agriculture and forestry, medicinal and aromatic plants I, vol 4. Springer, Berlin, pp 60–103Google Scholar
  6. Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932CrossRefPubMedGoogle Scholar
  7. Bouvier F, Suire C, d’Harlingue A, Backhaus RA, Camara B (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252CrossRefPubMedGoogle Scholar
  8. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429CrossRefPubMedGoogle Scholar
  9. Chu HY, Wegel E, Osbourn A (2011) From hormones to secondary metabolism: the emergence of metabolic gene clusters in plants. Plant J 66:66–79CrossRefPubMedGoogle Scholar
  10. Danova K (2014) Biotechnological utilization of the indigenous biosynthetic capacity of medicinal and aromatic plants. Experience in the genera Hypericum, Pulsatilla and essential oil bearing Artemisia alba characteristic for the Balkan region. In: Govil (ed) Biotechnology and genetic engineering II. Studium Press LLC, Houston, pp 355–392Google Scholar
  11. Danova K, Todorova M, Trendafilova A, Evstatieva L (2012) Cytokinin and auxin effect on the terpenoid profile of the essential oil and morphological characteristics of shoot cultures of Artemisia alba. Nat Prod Commun 7:1–2Google Scholar
  12. Dekker JP, Hassoldt A, Pettersson A, Van Roon H, Groot ML, van Grondelle R (1995) On the nature of the F695 and F685 emission of photosystem II. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer, Dordrecht, pp 53–56CrossRefGoogle Scholar
  13. Djilianov DL, Dobrev PI, Moyankova DP, Vaňková R, Georgieva DT, Gajdošová S, Motyka V (2013) Dynamics of endogenous phytohormones during dessication and recovery of the resurrection púlant species Haberlea rhodopensis. J Plant Growth Regul 32:564–574CrossRefGoogle Scholar
  14. Dobránszki J, Mendler-Drienyovszki N (2014) Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J Plant Phys 171:1472–1478CrossRefGoogle Scholar
  15. Dobrev PI, Kamínek PM (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29CrossRefPubMedGoogle Scholar
  16. Dwivedi S, Vaňková R, Motyka V, Herrera C, Žižková E, Auer C (2010) Characterization of Arabidopsis thaliana mutant ror-1 (roscovitine-resistant) and its utilization in understanding of the role of cytokinin N-glucosylation pathway in plants. Plant Growth Regul 61:231–242CrossRefGoogle Scholar
  17. Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Zizková E, Hanus J, Dancák M, Trávnícek B, Pesek B, Krupicka M, Vanková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot 62:2827–2840CrossRefPubMedGoogle Scholar
  18. Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507:80–99CrossRefPubMedGoogle Scholar
  19. Harrison MA, Melis A (1992) Organization and stability of polypeptides associated with the chlorophyll a-b light-harvesting complex of photosystem-II. Plant Cell Physiol 33:627–637Google Scholar
  20. Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83CrossRefPubMedGoogle Scholar
  21. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. Plant Cell 25:3159–3173CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kakimoto T (2003) Perception and signal transduction of cytokinins. Ann Rev Plant Biol 54:605–627CrossRefGoogle Scholar
  23. Kamínek M, Březinová A, Gaudinová A, Motyka V, Vaňková R, Zažímalová E (2000) Purine cytokinins: a proposal for abbreviations. Plant Growth Regul 32:253–256CrossRefGoogle Scholar
  24. Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-Zeatin biosyntheses in Arabidopsis. J Biol Chem 79:14049–14054CrossRefGoogle Scholar
  25. Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, Martinoia E, Sakakibara H, Lee Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA 111:7150–7155CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kovács L, Damkjær J, Kereïche S, Ilioaia C, Ruban AV, Boekema EJ, Jansson S, Horton P (2006) Lack of the light-harvesting complex CP24 affects the structure and function of the grana membranes of higher plant chloroplasts. Plant Cell 18:3106–3120CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krumova S, Motyka V, Dobrev P, Todorova M, Trendafilova A, Evstatieva L, Danova K (2013) Terpenoid profile of Artemisia alba is related to endogenous cytokinins in vitro. Bul J Agric Sci 19:26–30Google Scholar
  28. Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60CrossRefPubMedGoogle Scholar
  29. Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmulling T, Romanov GA (2015) Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66:1851–1863CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mc Garvey D, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026CrossRefGoogle Scholar
  31. Mullet JE, Burker JJ, Arntzen CJ (1980) Chlorophyll proteins of photosystem I. Plant Physiol 65:814–822CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973CrossRefPubMedGoogle Scholar
  33. Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65:1955–1972CrossRefPubMedGoogle Scholar
  34. Radulović N, Blagojević P (2010) Volatile profiles of Artemisia alba from contrasting serpentine and calcareous habitats. Nat Prod Commun 5:1117–1122PubMedGoogle Scholar
  35. Roberts SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395CrossRefPubMedGoogle Scholar
  36. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449CrossRefPubMedGoogle Scholar
  37. Sandra P, Bicchi C (1987) Microtechniques in essential oil analysis. In: Sandra P, Bicchi C (eds) Capillary gas chromatography in essential oil analysis. Huethig, New York, pp 85–122Google Scholar
  38. Seemann M, Bui BTS, Wolff M, Miginiac-Maslow M, Rohmer M (2006) Isoprenoid biosynthesis in plant chloroplasts via the MEP pathway: direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Lett 580:1547–1552CrossRefPubMedGoogle Scholar
  39. Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130PubMedGoogle Scholar
  40. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279:41866–41872CrossRefPubMedGoogle Scholar
  41. Tkachev AV (2008) Investigation of volatile compounds in plants. Offset, NovosibirskGoogle Scholar
  42. Trendafilova A, Todorova M, Vitkova A (2010) Essential oil composition of Achillea clusiana from Bulgaria. Nat Prod Commun 5:129–132PubMedGoogle Scholar
  43. Vankova R (2014) Cytokinin regulation of plant growth and stress responses. In: Tran LSP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, New YorkGoogle Scholar
  44. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–10492CrossRefPubMedPubMedCentralGoogle Scholar
  45. Werner T, Motyka V, Laucou V, Smets R, van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wildermuth MC, Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123CrossRefPubMedPubMedCentralGoogle Scholar
  47. Záveská Drábková L, Dobrev PI, Motyka V (2015) Phytohormone profiling across the bryophytes. PLoS ONE 10:e0125411CrossRefPubMedPubMedCentralGoogle Scholar
  48. Žižková E, Dobrev PI, Muhovski Y, Hošek P, Hoyerová K, Haisel D, Procházková D, Lutts S, Motyka V, Hichri I (2015) Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biol 15:85CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kalina Danova
    • 1
  • Vaclav Motyka
    • 2
  • Milka Todorova
    • 1
  • Antoaneta Trendafilova
    • 1
  • Sashka Krumova
    • 3
  • Petre Dobrev
    • 2
  • Tonya Andreeva
    • 3
  • Tsvetelina Oreshkova
    • 4
  • Stefka Taneva
    • 3
  • Ljuba Evstatieva
    • 5
  1. 1.Institute of Organic Chemistry with Centre of PhytochemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Experimental BotanyCzech Academy of SciencesPrague 6Czech Republic
  3. 3.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
  4. 4.Institute of Biology and Immunology of ReproductionBulgarian Academy of SciencesSofiaBulgaria
  5. 5.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations