Skip to main content
Log in

Comparative Analysis of the Reaction to Salinity of Different Chickpea (Cicer aretinum L.) Genotypes: A Biochemical, Enzymatic and Transcriptional Study

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Oxidative stress is one of the serious biochemical consequences of environmental stresses, particularly salinity. The present study was conducted to evaluate biochemical, antioxidative enzymes and the corresponding gene expression responses of four contrastive chickpea genotypes to 100 mM NaCl stress during 12 days. The salinity stress imposed significant increases (p ≤ 0.05) compatible osmolytes, that is, proline and soluble carbohydrate, especially in the most tolerant genotype (T1) by 14.87 µmol g−1 DW and 204 mg g−1 DW after 12 days of stress, respectively, to assist in osmotic adjustment and maintain cell membrane integrity to preserve cell turgor. Similarly, 7 days of salinity incurred differential increases in enzymatic activities of T1 and the most sensitive genotype (S2) by 66 and 20% for SOD, 138 and 15% for CAT, 179 and 77% for APX, and 172 and 136% for GR over the relative controls, respectively. Furthermore, corresponding transcript profiles for some predominant isoforms of enzymes were analyzed using the RT-PCR technique. Results revealed the same genotype-dependent changes, correlating well with higher activity of SOD, CAT, APX in T1 (0.97***, 0.80**, and 0.86**) as compared with S2 (0.91***, 0.58ns, and 0.84**). The data showed that higher activities of antioxidant enzymes as well as earlier and more up-regulation of their corresponding gene expressions in T1 could be some reasons for salinity tolerance in this genotype to cope with oxidative stress. This reaction was also accompanied by lower chlorophyll degradation (−37%), the lowest MDA formation (224%), and higher RWC (−31%) in T1 relative to respective control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Romman S, Shatnawi M (2011) Isolation and expression analysis of chloroplastic copper/zinc superoxide dismutase gene in barley. S Afr J Bot 77(2):328–334

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Shaheen R (2007) Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz J Plant Physiol 19(2):149–161

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S. Afr. J Bot 77(1):36–44

    CAS  Google Scholar 

  • Ahmad P, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694

    CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exper Bot 59(2):217–223

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exper Bot 53(372):1331–1341

    Article  CAS  Google Scholar 

  • Ara N, Nakkanong K, Lv W, Yang J, Hu Z, Zhang M (2013) Antioxidant enzymatic activities and gene expression associated with heat tolerance in the stems and roots of two cucurbit species (“Cucurbita maxima” and “Cucurbita moschata”) and their interspecific inbred line “Maxchata”. Int J Mol Sci 14(12):24008–24028

    Article  PubMed  PubMed Central  Google Scholar 

  • Arefian M, Shafaroudi SM (2015) Physiological and gene expression analysis of extreme chickpea (Cicer arietinum L.) genotypes in response to salinity stress. Acta Physiol Plant 37(9):1–11

    Article  CAS  Google Scholar 

  • Arefian M, Vessal S, Bagheri A (2014) Biochemical changes in response to salinity in chickpea (Cicer arietinum L.) during early stages of seedling growth. J Anim Plant Sci 24(6):1849–1857

    Google Scholar 

  • Arshi A, Ahmad A, Aref IM, Iqbal M (2012) Comparative studies on antioxidant enzyme action and ion accumulation in soybean cultivars under salinity stress. J Env Biol 33(2):9–20

    CAS  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase scavenging enzyme in plants. Physiol Plantarum 85(2):235–241

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  CAS  Google Scholar 

  • Azizpour K, Shakiba M, Sima N.K.K., Alyari H, Mogaddam M, Esfandiari E, Pessarakli M (2010) Physiological response of spring durum wheat genotypes to salinity. J Plant Nutr 33(6):859–873

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef AM, Ahmad P (2011) Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int J Plant Physiol Biochem 3(14):253–264

    CAS  Google Scholar 

  • Bandeoğlu E, Eyidoğan F, Yücel M, Öktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42(1):69–77

    Article  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161(2):559–566

    Article  CAS  PubMed  Google Scholar 

  • Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics: MCP 6(11):1868–1884

    Article  CAS  PubMed  Google Scholar 

  • Bidabadi SS, Meon S, Wahab Z, Subramaniam S, Mahmood M (2012) In vitro selection and characterization of water stress tolerant lines among ethyl methanesulphonate (EMS) induced variants of banana (Musa spp., with AAA genome). Aust J Crop Sci 6(3):567–575

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Landolt W, Bucher J, Strasser R (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109(3):501–507

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  CAS  PubMed  Google Scholar 

  • Demiral T, Türkan I (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl. treatment? J Plant Physiol 161(10):1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exper Bot 53(3):247–257

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers P.t., Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Edmeades GO, 1996. Developing Drought and Low N-tolerant Maize: Proceedings of a Symposium, March 25–29, 1996, CIMMYT, El Batán, Mexico. CIMMYT

  • Edreva A (2005) Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric Ecosyst Environ 106(2):119–133

    Article  CAS  Google Scholar 

  • Esfandiari E, Shakiba MR, Mahboob SA, Alyari H, Toorchi M (2007b) Water stress, antioxidant enzyme activity and lipid peroxidation in wheat seedling. J Food Agri Environ 5(1):149

    CAS  Google Scholar 

  • Esfandiari E, Javadi A, Shokrpour M, Shekari F (2011) The effect of salt stress on the antioxidant defense mechanisms of two wheat (Triticum aestivum L.) cultivars. Fresen Environ Bull 20(8):2021–2026

    CAS  Google Scholar 

  • Eyidogan F, Öz MT (2007) Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiol Plant 29(5):485–493

    Article  CAS  Google Scholar 

  • Flowers TJ, Gaur PM, Gowda C.L.L., Krishnamurthy L, Samineni S, Siddique K.H.M., Turner NC, Vadez V, Varshney RK, Colmer TD (2009) Salt sensitivity in chickpea. Plant cell Environ 33(4):490–509

    Article  PubMed  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133(1):21–25

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Fridovich I (1989) Superoxide dismutases: An adaptation to a paramagnetic gas. J Biol Chem 264(14):7761–7764

    CAS  PubMed  Google Scholar 

  • García Limones C, Dorado G, Navas Cortés J, Jiménez Díaz R, Tena M (2009) Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress related genes. Plant Biol 11(2):194–203

    Article  PubMed  Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33(4):502–511

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gomez J, Hernandez J, Jimenez A, Del Rio L, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Res 31(1):11–18

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hernandez J, Jimenez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23(8):853–862

    Article  CAS  Google Scholar 

  • Hua XJ, Van De Cotte B, Van Montagu M, Verbruggen N (2001) The 5′ untranslated region of the At-P5R gene is involved in both transcriptional and post transcriptional regulation. Plant J 26(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Chen C, Plant A (2000) Regulation by ABA of osmotic stress induced changes in protein synthesis in tomato roots. Plant Cell Environ 23(1):51–60

    Article  CAS  Google Scholar 

  • Katsuhara M, Otsuka T, Ezaki B (2005) Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Sci 169(2):369–373

    Article  CAS  Google Scholar 

  • Kavas M, Akça OE, Akçay UC, Peksel B, Eroğlu S, Öktem HA, Yücel M (2015) Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress. Arch Biol Sci 67(4):1303–1312

    Article  Google Scholar 

  • Kukreja S, Nandwal A, Kumar N, Sharma S, Unvi V, Sharma P (2005) Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plantarum 49(2):305–308

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C, 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Analyt. Chem Published Online

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Meloni DA, Gulotta MR, Martínez CA, Oliva MA (2004) The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz J Plant Physiol 16(1):39–46

    Article  CAS  Google Scholar 

  • Meneguzzo S, Navam-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCI concentrations. J plant physiol 155(2):274–280

    Article  CAS  Google Scholar 

  • Menezes-Benavente L, Teixeira FK, Alvim Kamei CL, Margis-Pinheiro M (2004a) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166(2):323–331

    Article  CAS  Google Scholar 

  • Menezes-Benavente L, Teixeira FK, Kamei C.L.A., Margis-Pinheiro M (2004b) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166(2):323–331

    Article  CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant PhysiolBiochem 54:17–26

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Mishra S (2009) Changes in growth and metabolic profile of Chickpea under salt stress. J appl biosci 23:1436–1446

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    Article  CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169(6):596–604

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ 54(3):89–99

    Article  CAS  Google Scholar 

  • Qilin D, Jin W, Bin F, Tingting L, Chen C, Honghui L, Shizhang D, 2009. Molecular cloning and characterization of a new peroxidase gene (OvRCI) from Orychophragmus violaceus. Afr J Biotechnol. 8(23)

  • Queirós F, Rodrigues JA, Almeida JM, Almeida DP, Fidalgo F (2011) Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line. Plant Physiol Biochem 49(12):1410–1419

    Article  PubMed  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi T, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35(4):1039–1050

    Article  CAS  Google Scholar 

  • Salin ML (1991) Chloroplast and mitochondrial mechanisms for protection against oxygen toxicity. Free Radic Res Commun 13(1):851–858

    Article  Google Scholar 

  • Saxena NP, Krishnamurthy L, Johansen C (1993) Registration of a drought-resistant chickpea germplasm. Crop Sci 33(6):1424–1424

    Article  Google Scholar 

  • Scandalios JG (1997) Molecular genetics of superoxide dismutases in plants. Cold Spring Harbor Monograph Arch 34:527–568

    CAS  Google Scholar 

  • Shi H, Lee B-H, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnol 21(1):81–85

    Article  CAS  Google Scholar 

  • Singh A (2004) The physiology of salt tolerance in four genotypes of chickpea during germination. J Agr Sci Tech 6:87–93

    Google Scholar 

  • Takahashi M-A, Asada K (1983) Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Arch Biochem Biophys 226(2):558–566

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112(4):1703–1714

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM (2009) A comprehensive resource of drought-and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10(1):523

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32(5):667

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Malekzadeh Shafaroudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefian, M., Vessal, S., Malekzadeh Shafaroudi, S. et al. Comparative Analysis of the Reaction to Salinity of Different Chickpea (Cicer aretinum L.) Genotypes: A Biochemical, Enzymatic and Transcriptional Study. J Plant Growth Regul 37, 391–402 (2018). https://doi.org/10.1007/s00344-017-9737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9737-z

Keywords

Navigation