Skip to main content

Modification of Osmolytes and Antioxidant Enzymes by 24-Epibrassinolide in Chickpea Seedlings Under Mercury (Hg) Toxicity

Abstract

The effects of 24-epibrassinolide (EBL, 10−6 M) on mitigation of mercury (Hg, 15 μM and 30 μM HgCl2) toxicity on growth, physio-biochemical attributes, and antioxidant enzymes in chickpea (Cicer arietinum L.) were evaluated. Mercury (Hg)-treated plants showed reduced growth and leaf pigment content in a concentration-dependent manner, but this effect was significantly ameliorated by EBL application. Exogenously applied EBL enhanced the accumulation of proline and glycine betaine (GB) in control as well as in Hg-treated plants reflecting the positive effects of EBL on leaf’s relative water content (RWC) in the plants. EBL supplementation reduced the production of hydrogen peroxide, and hence, lipid peroxidation that ultimately provided membrane stability, thereby aiding in reducing electrolyte leakage induced by Hg toxicity. Application of EBL significantly improved the activities of antioxidant enzymes including SOD, CAT, GST, and GPX, thereby resulting in optimization of the ascorbate–glutathione pathway by improving the contents of electron donors and redox components, ascorbate (AsA), and glutathione (reduced as well as oxidized), which might have contributed to protecting the photosynthetic electron transport chain from Hg-induced oxidative stress. Considerable improvement in the uptake of essential elements was also obvious in EBL-treated plants. In conclusion, Hg stress induced adverse effects on growth and development of chickpea seedlings; however, EBL-treated seedlings showed restored growth through modulation of biochemical parameters and enzymatic and nonenzymatic antioxidants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    CAS  Article  Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460

    CAS  Article  PubMed  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014) Drought tolerance: roles of organic osmolytes, growth regulators and mineral nutrients. In: Ahmad P, Wani WR, Physiological mechanisms and adaptation strategies in plants under changing environment, vol 1. Springer, New York, pp 25–56

    Chapter  Google Scholar 

  • Ahanger MA, Agarwal RM, Tomar NS, Shrivastava M (2015) Potassium induces positive changes in nitrogen metabolism and antioxidant system of oat (Avena sativa L. cultivar Kent). J Plant Interact 10(1):211–223

    Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    CAS  Article  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica junceaL.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Article  Google Scholar 

  • Ahmad P, Sarwat M, Bhat NA, Wani MR, Kazi AG, Tran LS (2015a) Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1):e0114571

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015b) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Abd_Allah EF, Hashem A, Sarwat M, Gucel S (2016) Exogenous application of selenium mitigates cadmium toxicity in Brassica juncea L. (czern & cross) by up-regulating antioxidative system and secondary metabolites. J Plant Growth Regul 35:936–950

    CAS  Article  Google Scholar 

  • Ali Q, Athar HR, Ashraf M (2006) Influence of exogenously applied brassinosteroids on the mineral nutrient status of two wheat cultivars grown under saline conditions. Pak J Bot 38(5):1621–1632

    Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). Environ Exp Bot 59:217–223

    CAS  Article  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminum stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159

    CAS  Article  Google Scholar 

  • Anuradha S, Rao SSR (2007) The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant Soil Environ 53(11):465–472

    CAS  Article  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK, Arora P (2008) Amelioration of zinc toxicity by 28-homobrassinolide in Zea mays L. Can J Pure Appl Sci 2(3):503–509

    Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010) 24-Epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16(3):285–293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A 2014 Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    CAS  Article  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38(3):209–215

    CAS  Article  Google Scholar 

  • Bajguz A (2010) An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ Exp Bot 68:175–179

    CAS  Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Sci 39:205–207

    CAS  Google Scholar 

  • Bayer WF, Fridovich JL (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  Google Scholar 

  • Cao F, Liu L, Ibrahim W, Cai Y, Wu F (2013) Alleviating effects of exogenous glutathione, glycine betaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza sativa). Agrotechnology 2:107

    Google Scholar 

  • Cargnelutti D, Tabaldi LA, Spanevello RM, de Oliveira Jucoski G, Battisti V, Redin M et al (2006) Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere 65:999–1006

    CAS  Article  PubMed  Google Scholar 

  • Cerana R, Bonetti A, Marre MT, Romani G, Lado P (1983) Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls (Vigna angularis). Physiol Plant 59:23–27

    CAS  Article  Google Scholar 

  • Chen YA, Chi WC, Huang TL, Lin CY, Nguyeh TTQ, Hsiung YC et al (2012) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55:23–32

    CAS  Article  PubMed  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT et al (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS ONE 9(5):e95163

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesnin L, Yien CH (1950) Turbidimetric determination of available sulphur. Soil Sci Soc Amer J 15:149–151

  • Choudhary SP, Kanwar M, Bhardwaj R, Gupta BD, Gupta RK (2011) Epibrassinolide ameliorates Cr(VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 84:592–600

    CAS  Article  PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LSP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Article  Google Scholar 

  • Du X, Zhu YG, Liu WJ, Zhao XS (2005) Uptake of mercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake. Environ Exp Bot 54:1–7

    CAS  Article  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    CAS  Article  PubMed  Google Scholar 

  • Esteban E, Moreno E, Peñalosa J, Cabrero JI, Millán R, Zornoza P (2008) Short and long-term uptake of Hg in white lupin plants: kinetics and stress indicators. Environ Exp Bot 62:316–322

    CAS  Article  Google Scholar 

  • Fang Z, Bouwkamp JC, Solomos T (1998) Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot 49(320):503–510

    CAS  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    CAS  Article  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49:55–64

    CAS  Article  Google Scholar 

  • Fariduddin Q, Yusuf M, Ahmad I, Ahmad A (2014) Brassinosteroids and their role in response of plants to abiotic stresses. Biol Plant 58(1):9–17

    CAS  Article  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    CAS  Article  PubMed  Google Scholar 

  • Friberg L, Mottet NK (1989) Accumulation of methylmercury and inorganic mercury in the brain. Biol Trace Elem Res 21:201–206

    CAS  Article  PubMed  Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg D (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water-soluble quaternary ammonium compounds. Plant Soil 70:303–307

    CAS  Article  Google Scholar 

  • Hameed A, Qadri TN, Mahmooduzzafar Siddiqi TO, Iqbal M (2011) Differential activation of the enzymatic antioxidant system of Abelmoschus esculentus L. under CdCl2 and HgCl2 exposure. Braz J Plant Physiol 23(1):45–55

    CAS  Article  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Pollut 151:60–66

    CAS  Article  PubMed  Google Scholar 

  • Hasanuzzaman M, Fujita M (2013) Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology 22:584–596

    CAS  Article  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457

    CAS  Article  PubMed  Google Scholar 

  • Hayat S, Ali BBA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Article  Google Scholar 

  • Hayat S, Ali B, Hassan SA, Hayat Q, Ahmad A (2010a) Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239(1–4):3–14

    CAS  Article  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010b) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    CAS  Article  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19:325–335.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125: 189–198.

    CAS  Article  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    CAS  Article  Google Scholar 

  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in ascorbate-deficient arabidopsis mutant. J Exp Bot 56:3041–3049

    CAS  Article  PubMed  Google Scholar 

  • Janeczko A, Biesaga-Koscielniak J, Oklestkova J, Filek, Dziurka M, Szarek-Łukaszewska G, Koscielniak J (2010) Role of 24-epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci 196:311–321

    CAS  Google Scholar 

  • Jin SH, Li XQ, Wang GG, Zhu XT (2015) Brassinosteroids alleviate high-temperature injury in Ficus concinna seedlings via maintaining higher antioxidant defence and glyoxalase systems. AoB Plants 7:plv009

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Bhardwaj R, Chowdhary SP, Arora P, Sharma P, Kumar S (2013) Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol Plant 35:1351–1362

    CAS  Article  Google Scholar 

  • Kapoor D, Rattan A, Gautam V, Kapoor N, Bhardwaj R (2014) 24-Epibrassinolide mediated changes in photosynthetic pigments and antioxidative defence system of radish seedlings under cadmium and mercury stress. J Stress Physiol Biol 10(3):110–121

    Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasm 251:1007–1019

    CAS  Article  Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  Article  PubMed  Google Scholar 

  • Lenti K, Fodor F, Boddi B (2002) Mercury inhibits the activity of the NADPH: protochlorophyllide oxidoreductase (POR). Photosynthetica 40:145–151

    CAS  Article  Google Scholar 

  • Lerda D (1992) The effect of lead on Allium cepa L.. Mut Res 231:80–92

    Google Scholar 

  • Li XJ, Guo X, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ (2016) Over-expression of a brassinosteroid biosynthetic gene dwarf enhances photosynthetic capacity through activation of Calvin cycle enzymes in tomato. BMC Plant Biol 16:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Mclaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) The behavior and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

  • Miyake C, Asada K (1992) Thylakoid bound ascorbate peroxidase in spinach chloroplast and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–553

    CAS  Google Scholar 

  • Mondal NK, Das C, Datta JK (2015) Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environ Monit Assess 187:241

    Article  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Biol 49:249–279

    CAS  Article  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycine betaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp.. Plant Physiol 141(2):758–765

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Prusakova LD, Ezhov MN, Salnikov AI (1999) The use of emistim, epibrassinolide and uniconazole to overcome quality difference of buckwheat grains. Agrar Russ 1:41–44

    Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    CAS  Article  Google Scholar 

  • Ramakrishna B, Rao SSR (2012) 24-Epibrassinolide alleviated zinc-induced oxidative stress in radish (Raphanus sativus L.) seedlings by enhancing antioxidative system. Plant Growth Regul 68:249–259

    CAS  Article  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Roy SB, Bera AK (2002) Individual and combined effect of mercury and manganese on phenol and proline content in leaf and stem of mungbean seedlings. J Environ Biol 23(4):433–435

    CAS  PubMed  Google Scholar 

  • Sahu GK, Upadhyay S, Sahoo BB (2012) Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol Mol Biol Plants 8(1):21–31

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Sharma N, Hundal GS, Sharma I, Bhardwaj R (2014) 28-Homobrassinolide alters protein content and activities of glutathione S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicol Int 21(1):44–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YL, Dong YJ, Tian XY, Kong J, Bai XY, Xu LL, He ZL (2016) Role of foliar application of 24-epibrassinolide in response of peanut seedlings to iron deficiency. Biol Plant 60(2):329–342

    CAS  Article  Google Scholar 

  • Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55(404):1955–1962

    CAS  Article  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2011) Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress. Aust J Crop Sci 5(11):1441–1447

    CAS  Google Scholar 

  • Yamasaki S, Dillenburg LC (1999) Measurements of leaf relative water content in Araucaria angustifolia. Rev Bras Fisiol Veg 11:69–75

    Google Scholar 

  • Yan J, Guan L, Sun Y, Zhu Y, Liu L, Lu R et al (2015) Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant Cell Physiol 56(5):883–896

    CAS  Article  PubMed  Google Scholar 

  • Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induces chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963

    CAS  Article  Google Scholar 

  • Yuan LY, Du J, Yuan YH, Shu SR, Sun J, Guo SR (2012) Effects of 24-epibrassinolide on ascorbate–glutathione cycle and polyamine levels in cucumber roots under Ca(NO3)2 stress. Acta Physiol Plant 35(1):253–262

    Article  Google Scholar 

  • Zhao X, Wang D (2010) Mercury in some chemical fertilizers and the effect of calcium superphosphate on mercury uptake by corn seedlings (Zea mays L). J Environ Sci 22(8):1184–1188

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group No (RG-1438-039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest exists.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmad, P., Ahanger, M.A., Egamberdieva, D. et al. Modification of Osmolytes and Antioxidant Enzymes by 24-Epibrassinolide in Chickpea Seedlings Under Mercury (Hg) Toxicity. J Plant Growth Regul 37, 309–322 (2018). https://doi.org/10.1007/s00344-017-9730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9730-6

Keywords

  • 24-Epibrassinolide
  • Antioxidants
  • Osmolytes
  • Lipid peroxidation
  • Mercury stress
  • Cicer arietinum