Skip to main content
Log in

Dynamics of Endogenous Indole-3-acetic Acid and Cytokinins During Adventitious Shoot Formation in Ipecac

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

For most plant species, auxins and cytokinins are added to the culture medium to induce adventitious shoot formation. In ipecac (Carapichea ipecacuanha (Brot.) L. Andersson), however, shoots form on internodal segments without phytohormone treatment. This creates an opportunity to analyze the dynamics of endogenous phytohormones during adventitious shoot formation. Ipecac is a medicinal plant whose root extract is used as an expectorant and emetic. We explored the relationships among adventitious shoot formation and levels of an auxin (indole-3-acetic acid) and four cytokinins in ipecac. Adventitious shoots that formed in the apical region of internodal segments were derived from epidermal cells. One of the shoots grew vigorously with a vascular bundle connected to that of the segment, and the others were suppressed in the outgrowth. When the biggest shoot was removed, another began to grow. During adventitious shoot formation, endogenous auxin accumulated in the basal region of segments, whereas cytokinins accumulated in the middle region. Thus, the distribution of auxin, not cytokinins, determined where adventitious shoots formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ajithkumar D, Seeni S (1998) Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L.) Corr., a medicinal tree. Plant Cell Rep 17(5):422–426. doi:10.1007/s002990050418

    Article  CAS  Google Scholar 

  • Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol 14(4):e1002446. doi:10.1371/journal.pbio.1002446

    Article  PubMed  PubMed Central  Google Scholar 

  • Blakeslee JJ, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8(5):494–500. doi:10.1016/j.pbi.2005.07.014

    Article  CAS  PubMed  Google Scholar 

  • Busse JS, Figueroa-Cabanas M, Stimart DP (2005) Developmental anatomy of adventitious shoot formation on snapdragon (Antirrhinum majus L.) hypocotyls in vitro. J Am Soc Hortic Sci 130(2):147–151

    Google Scholar 

  • Chatterjee SK, Nandi RP, Ghosh NC (1982) Cultivation and utilization of ipecac in West Bengal. In: Atal CK, Kapur BM (eds) Cultivation and utilization of medicinal plants, vol 5. Regional Research Laboratory, Council of Scientific and Industrial Research, Jammu-Tawi, , pp 295–301

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358

    Article  Google Scholar 

  • de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Brautigam A, Carlsbecker A, Gould SB (2016) Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. New Phytol 209(2):705–720. doi:10.1111/nph.13630

    Article  PubMed  Google Scholar 

  • Djilianov DL, Dobrev PI, Moyankova DP, Vankova R, Georgieva DT, Gajdošová S, Motyka V (2013) Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J Plant Growth Regul 32(3):564–574. doi:10.1007/s00344-013-9323-y

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan S, Caswell KL, Kartha KK, Chibbar RN (2002) Shoot regeneration and proliferation. In: Khachatourians GG, McHughen A, Scorza R, Nip WK (eds) Transgenic plants and crops. Marcel Dekker, Inc., New York, pp 69–84

    Google Scholar 

  • Gensel PG, Edwards D (2001) Plants invade the land. Columbia University Press, New York

    Book  Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) Adventitious regeneration. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue Culture, vol 1. 3rd edn. Springer, Dordrecht, pp 355–401

    Google Scholar 

  • Golovatskaya IF, Karnachuk RA (2007) Dynamics of growth and the content of endogenous phytohormones during kidney bean scoto-and photomorphogenesis. Russ J Plant Physiol 54(3):407–413. doi:10.1134/s102144370703017x

    Article  CAS  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber Math-Naturwiss Kl Akad Wiss Wien 111:69–92

    Google Scholar 

  • Huang H, Li J, OuYang K, Zhao X, Li P, Liao B, Chen X (2014) Direct adventitious shoot organogenesis and plant regeneration from cotyledon explants in Neolamarckia cadamba. Plant Biotechnol 31(2):115–121. doi:10.5511/plantbiotechnology.14.0125a

    Article  CAS  Google Scholar 

  • Ideda K, Teshima D, Aoyama T, Satake M, Shimomura K (1988) Clonal propagation of Cephaelis ipecacuanha. Plant Cell Rep 7(4):288–291. doi:10.1007/bf00272545

    Article  CAS  PubMed  Google Scholar 

  • Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K, Ohme-Takagi M (2011) The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol 21(6):508–514. doi:10.1016/j.cub.2011.02.020

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66(2):123–143

    Article  PubMed  Google Scholar 

  • Kuroha T, Ueguchi C, Sakakibara H, Satoh S (2006) Cytokinin receptors are required for normal development of auxin-transporting vascular tissues in the hypocotyl but not in adventitious roots. Plant Cell Physiol 47(2):234–243. doi:10.1093/pcp/pci240

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28(4):465–474

    Article  CAS  PubMed  Google Scholar 

  • Müller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82(5):874–886. doi:10.1111/tpj.12862

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101(21):8039–8044. doi:10.1073/pnas.0402504101

    Article  PubMed  PubMed Central  Google Scholar 

  • Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci USA 106(41):17431–17436. doi:10.1073/pnas.0906696106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Purohit SD (2006) In vitro shoot bud differentiation and plantlet regeneration in Celastrus paniculatus Willd. Biol Plant 50(4):501–506. doi:10.1007/s10535-006-0079-0

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro somatic embryogenesis from callus cultures of Cephaelis ipecacuanha A. Richard. Scientia Hortic 86 (1):71–79. doi:10.1016/S0304-4238(00)00130-8

    Article  CAS  Google Scholar 

  • Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Article  Google Scholar 

  • Sachs T (1991) Cell polarity and tissue patterning in plants. Development 113(Supplement 1):83–93

    Google Scholar 

  • Sanikhani M, Frello S, Serek M (2006) TDZ induces shoot regeneration in various Kalanchoë blossfeldiana Poelln. cultivars in the absence of auxin. Plant Cell Tiss Org Cult 85(1):75–82. doi:10.1007/s11240-005-9050-6

    Article  CAS  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27(1):44–63. doi:10.1105/tpc.114.133595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69(4):429–435

    Article  CAS  PubMed  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    CAS  PubMed  Google Scholar 

  • Stahl Y, Simon R (2010) Plant primary meristems: shared functions and regulatory mechanisms. Curr Opin Plant Biol 13(1):53–58. doi:10.1016/j.pbi.2009.09.008

    Article  CAS  PubMed  Google Scholar 

  • Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmulling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67(1):157–168. doi:10.1111/j.1365-313X.2011.04584.x

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45(6):1028–1036. doi:10.1111/j.1365-313X.2006.02656.x

    Article  CAS  PubMed  Google Scholar 

  • Teshima D, Ikeda K, Satake M, Aoyama T, Shimomura K (1988) Production of emetic alkaloid by in vitro culture of Cephaelis ipecacuanha A. Richard. Plant Cell Rep 7(4):278–280. doi:10.1007/bf00272542

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA 19(7):714–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Deo Singh B, Nath Tiwari K (1998) Shoot regeneration and somatic embryogenesis from different explants of Brahmi [Bacopa monniera (L.) Wettst.]. Plant Cell Rep 17(6):538–543. doi:10.1007/s002990050438

    Article  CAS  Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tiss Org Cult 66(1):9–16. doi:10.1023/a:1010652006417

    Article  CAS  Google Scholar 

  • Watad AA, Ahroni A, Zuker A, Shejtman H, Nissim A, Vainstein A (1996) Adventitious shoot formation from carnation stem segments: a comparison of different culture procedures. Scientia Hortic 65 (4):313–320. doi:10.1016/0304-4238(96)00874-6

    Article  Google Scholar 

  • Yoshimatsu K, Shimomura K (1991) Efficient shoot formation on internodal segments and alkaloid formation in the regenerates of Cephaelis ipecacuanha A. Richard. Plant Cell Rep 9(10):567–570. doi:10.1007/bf00232333

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu K, Shimomura K (1993) Cephaelis ipecacuanha A. Richard (Brazilian Ipecac): Micropropagation and the production of emetine and cephaeline. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21. Medicinal and aromatic plants IV. Springer, Berlin, pp 87–103

    Google Scholar 

  • Yoshimatsu K, Shimomura K (1994) Plant regeneration on cultured root segments of Cephaelis ipecacuanha A. Richard. Plant Cell Rep 14(2–3):98–101. doi:10.1007/bf00233769

    CAS  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9):2914–2927. doi:10.1105/tpc.109.068635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang Y, Zhang X, Zhang M, Han D, Qiu C, Han Z (2012) Dynamics of phytohormone and DNA methylation patterns changes during dormancy induction in strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 31(1):155–165. doi:10.1007/s00299-011-1149-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Research Center for Life and Environmental Sciences, Toyo University. We thank Akira Murakami for his technical support, and Shosaku Kashiwada and Uma Maheswari Rajagopalan for their constructive comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikihisa Umehara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 593 KB)

Supplementary material 2 (PDF 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, I., Taniguchi, K., Shimomura, K. et al. Dynamics of Endogenous Indole-3-acetic Acid and Cytokinins During Adventitious Shoot Formation in Ipecac. J Plant Growth Regul 36, 805–813 (2017). https://doi.org/10.1007/s00344-017-9684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-017-9684-8

Keywords

Navigation