Advertisement

Journal of Plant Growth Regulation

, Volume 36, Issue 2, pp 413–423 | Cite as

Pre-anthesis CPPU Treatment Modifies Quality and Susceptibility to Post-harvest Berry Cracking of Vitis vinifera cv. ‘Thompson Seedless’

  • Francisca Jáuregui-Riquelme
  • María Soledad Kremer-Morales
  • José Antonio Alcalde
  • Alonso Gastón Pérez-Donoso
Article
  • 369 Downloads

Abstract

Plant growth regulators (PGRs), especially gibberellic acid (GA), are often used in table grape (Vitis vinifera) production to increase berry size. However, overuse of this PGR (for example, more than 200 g·ha−1·season−1 of GA) may result in problems with berry condition at the post-harvest stage. A synthetic cytokinin, florchlorfenuron (CPPU), could be considered an alternative to GA. Thus, our objective was to study the effects of pre-anthesis CPPU treatment on berry quality and susceptibility to post-harvest cracking of table grapes. CPPU applied to ‘Thompson Seedless’ inflorescences 48 or 36 days prior to anthesis increased ovary size, number of cells in the ovary pericarp at bloom and berry size at harvest. It also increased the amount of soluble solids and decreased titratable acidity of the fruit, thus allowing an earlier harvest. Finally, if GA was applied during berry growth, CPPU at pre-anthesis improved berry potential tolerance to post-harvest cracking and spoilage. This work demonstrates that application of CPPU at the pre-anthesis stage modifies grape development, improving berry size and potential post-harvest fruit performance facilitating also an early harvest.

Keywords

CPPU Cytokinin Gibberellic acid Pre-anthesis Thompson Seedless Vitis vinifera 

Notes

Acknowledgements

We thank Dr. John Labavitch for critically reading the manuscript. This work was partially funded by the FONDEF Grant (No CA13I10239) from CONICYT. Jáuregui was supported by a PhD fellowship from CONICYT (No 24121032, 2012).

References

  1. Balibrea ME, Gonzalez M, Fatima T, EhneB R, Kyun Lee, Proels R, Tanner W, Roitsch T (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16:1276–1287CrossRefGoogle Scholar
  2. Carmona MJ, Chïb J, Marínez-Zapater JM, Thomas M (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59:2579–2596CrossRefPubMedGoogle Scholar
  3. Christensen LP (2000) Raisin grape varieties. In: Christensen peter. Raisin production manual 2000. University of California Press, California, pp 38–47Google Scholar
  4. Coombe B (1976) The Development of fleshy fruits. Annu Rev Plant Physiol 27:507–528CrossRefGoogle Scholar
  5. Crane J (1969) The role of hormones in fruit set and development. Hort Sci 4:108–111Google Scholar
  6. Defilippi B, Manríquez D (2011) Evaluación de sistemas de medición de firmeza para uva de mesa y cerezas utilizado en la industria frutícola. Rev Frutíc 2:26–32Google Scholar
  7. Del Pozo JC, Lopez-Matas MA, Ramirez-Parra E, Gutierrez C (2005) Hormonal control of the plant cell cycle. Physiol Plant 123:173–183CrossRefGoogle Scholar
  8. Del Solar C, Depallens D, Neubauer L, Pizarro U, Soza JA (2000) Defensive power effects of calcium, magnesium and girdling, on quality and condition of cvs ‘Thompson Seedless’ and Red Globe table grapes. Rev Pharos 7:19–41Google Scholar
  9. Dokoozlian NK (2000a) Grape berry growth and development. In: Christensen LP (ed) Raisin production manual. University of California Press, California, pp 30–37Google Scholar
  10. Dokoozlian NK (2000b) Plant growth regulator use for table grape production in California. In: INIA (eds) Proceedings of 4th International symposium on table grape. La Serena, Chile, pp 129–143Google Scholar
  11. Durbak A, Yao H, Mcsteen P (2012) Hormone signaling in plant development. Curr Opin Plant Biol 15:92–96CrossRefPubMedGoogle Scholar
  12. Fernandez L, Pradal M, Lopez G, Berud F, Romieu C, Torregrosa L (2006) Berry size variability in Vitis vinifera L. Vitis 45:53–55Google Scholar
  13. Garreth J, Posluszny U, Melville L (2015) Taming the wild grape: botany and horticulture in the Vitaceae, 1st edn, Springer, ChamCrossRefGoogle Scholar
  14. Harris J, Kriedemann P, Possingham J (1968) Anatomical aspects of grape berry development. Vitis 7:106–119Google Scholar
  15. Hartig K, Beck E (2006) Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biol 8:389–396CrossRefPubMedGoogle Scholar
  16. Hayes M, Feechan A, Dry I (2010) Involvement of abscisic acid in the coordinated regulation of stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. Plant Physiol 153:211–221CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389CrossRefPubMedGoogle Scholar
  18. Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627CrossRefPubMedGoogle Scholar
  19. Lebon G, Brun O, Magné C, Clément C (2005) Photosynthesis of the grapevine (Vitis vinifera) inflorescence. Tree Physiol 25:633–639CrossRefPubMedGoogle Scholar
  20. Lichter A, Dvir O, Fallik E, Cohen S, Golan R (2002) Cracking of cherry tomatoes in solution. Postharvest Biol Technol 26:305–312CrossRefGoogle Scholar
  21. McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:1–7CrossRefGoogle Scholar
  22. Menezes C (2002) Efeitos do CPPU e GA3, no cultivo de uva-‘Itália’ na regiao do submédio Sao Francisco, nordeste do Brasil. Rev Bras Frutic 24:348–353CrossRefGoogle Scholar
  23. Navarro M, Retamales J, Defilippi B (2001) Effect of cluster thinning and synthetic cytokinin (CPPU) application on fruit quality of `Sultanina`grapes treated with two gibberellin sources. Agric Téc 61, 15–25CrossRefGoogle Scholar
  24. Poupin MJ, Federici F, Medina C, Matus JT, Timmermann T, Arce-Johnson P (2007) Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development. Gene 404:10–24CrossRefPubMedGoogle Scholar
  25. Reynolds AG, Wardle DA, Zurowski C, Looney NE (1992) Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. J Am Soc Hortic Sci 117:85–89Google Scholar
  26. Scorza R, May L, Purnell B, Upchurch B (1991) Differences in number and area of mesocarp cells between small- and large-fruited peach cultivars. J Am Soc Hortic Sci 116:861–864Google Scholar
  27. Srinivasan C, Mullins MG (1981) Physiology of flowering in the grapevine—a review. Am J Enol Vitic 32:47–63Google Scholar
  28. Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487CrossRefPubMedGoogle Scholar
  29. Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76PubMedGoogle Scholar
  30. Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381CrossRefPubMedGoogle Scholar
  31. Zhang K, Letham DS, John PC (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-1ike H1 histone kinase. Planta 200:2–12CrossRefPubMedGoogle Scholar
  32. Zoffoli JP, Latorre BA, Naranjo P (2008) Hairline, a postharvest cracking disorder in table grapes induced by sulfur dioxide. Postharvest Biol Technol 47:90–97CrossRefGoogle Scholar
  33. Zoffoli JP, Latorre BA, Naranjo P (2009a) Preharvest applications of growth regulators and their effect on postharvest quality of table grapes during cold storage. Postharvest Biol Technol 51:183–192Google Scholar
  34. Zoffoli JP, Latorre BA, Rodriguez J, Aguilera JM (2009b) Biological indicators to estimate the prevalence of gray mold and hairline cracks on table grapes cv. ‘Thompson Seedless’ after cold storage. Postharvest Biol Technol 52:126–133Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Francisca Jáuregui-Riquelme
    • 1
  • María Soledad Kremer-Morales
    • 1
  • José Antonio Alcalde
    • 1
  • Alonso Gastón Pérez-Donoso
    • 1
  1. 1.Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations