Skip to main content

Effect of Differential Light Quality on Morphology, Photosynthesis, and Antioxidant Enzyme Activity in Camptotheca acuminata Seedlings

Abstract

Light quality is an important environmental factor for plant growth and development. In this study, the effects of light quality (white, blue, yellow, and red light) on plant growth, photosynthesis, and radical oxygen species production and scavenging were investigated, in Camptotheca acuminata (C. acuminata) seedlings, by means of measuring growth parameters, photosynthetic pigments, gas exchange, and chlorophyll fluorescence, as well as stomatal structure and density, chloroplast ultrastructure, and ROS contents and antioxidant activities. Compared with white light, red light significantly increased seedling height, shoot, and total plant biomass, and promoted the highest photosynthetic capacity, electron transport, and photochemical efficiency. Red light also helped facilitate leaf development, indicated by higher total and specific leaf area, as well as decreased malondialdehyde content and relative electrolyte conductivity and contents of superoxide anion production rate and peroxide. In contrast, blue and yellow light significantly reduced plant growth, and increased activities of superoxidase dismutase, peroxidase, and catalase. Furthermore, red light promoted chloroplast development, which enhanced photosynthetic efficiency. These results suggest that red light could improve plant growth in C. acuminata seedlings through activating photosynthetic processes, reducing ROS accumulation, and maintaining chloroplast structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Appelgren M (1991) Effects of light quality on stem elongation of Pelargonium in vitro. Sci Hortic 45(3):345–351

    Article  Google Scholar 

  • Balandrin MF, Kinghorn AD, Farnsworth NR (1993) Plant-derived natural products drug development. In: Kinghorn AD, Balandrin MF (eds) Human medicinal agents. American Chemical Society, Washington, DC, pp 2–12

    Chapter  Google Scholar 

  • Ballaré CL (1999) Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    CAS  Article  PubMed  Google Scholar 

  • Chen B, Chen ZH, Wang LL, Hu JQ (2012) Effects of different light quality on the formation and regenerative potentialities of calli of Camptotheca acuminata. North Hortic 17:112–115 (in Chinese)

    Google Scholar 

  • Chen XL, Guo WZ, Xue XZ, Wang LC, Qiao XJ (2014) Growth and quality responses of ‘Green Oak Leaf’lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci Hortic 172:168–175

    Article  Google Scholar 

  • Cope KR, Bugbee B (2013) Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience 48:504–509

    CAS  Google Scholar 

  • Deng Y, Shao QS, Li CC, Ye XQ, Tang RS (2012) Differential responses of double petal and multi petal jasmine to shading: II. Morphology, anatomy and physiology. Sci Hortic 144:19–28

    Article  Google Scholar 

  • Deshmukh PS, Sairam RK, Shukla DS (1991) Measurement of ion leakage as a screening technique for drought resistance in wheat genotypes. Indian J Plant Physiol 34(1):89–911

    Google Scholar 

  • Díaz-Vivancos P, Clemente-Moreno MJ, Rubio M, Olmos E, García JA, Martínez-Gómez P, Hernández JA (2008) Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59(8):2147–2160

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskins K, McCarthy SA (1987) Blue, red and blue plus red light control of chloroplast pigment and pigment-porteins in corn mesophyll cells: irradiance level-quality interaction. Physiol Plant 71:100–104

    CAS  Article  Google Scholar 

  • Fan XX, Xu ZG, Liu XY, Tang CM, Wang LW, Han XL (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55

    Article  Google Scholar 

  • Feng JC, Zhang YJ, Zhang QJ, Li JD, Bi HT, Wu YX (2008) Effects of different light quality on physiological and biochemical indexes in Camptoeca acuminata under low light condition. Nonwood Forest Res 26(1):1–7 (in Chinese)

    Google Scholar 

  • Fukuda N, Fujita M, Ohta Y, Sase S, Nishimura S, Ezura H (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci Hortic 115(2):176–182

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Article  Google Scholar 

  • Gyula P, Schäfer E, Nagy F (2003) Light perception and signalling in higher plants. Curr Opin Plant Boil 6(5):446–452

    CAS  Article  Google Scholar 

  • Haliapas S, Yupsanis TA, Syros TD, Kofidis G, Economou AS (2008) Petunia × hybrida during transition to flowering as affected by light intensity and quality treatments. Acta Physiol Plant 30(6):807–815

    CAS  Article  Google Scholar 

  • Hernández R, Kubota C (2012) Tomato seedling growth and morphological responses to supplemental LED lighting red:blue rations under varied daily solar light integrals. Acta Hortic 956:187–194

    Article  Google Scholar 

  • Hogewoning SW, Maljaars H, Harbinson J (2007) The acclimation of photosynthesis in cucumber leaves to different ratios of red and blue light. Photosynth Res 91:287–288

    Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61(11):3107–3117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128–133

    CAS  Article  Google Scholar 

  • Kobayashi K, Amore T, Lazaro M (2013) Light-Emitting Diodes (LEDs) for miniature hydroponic Lettuce. Opt Photon J 3:74–77

    CAS  Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyllfluorescence and photosynthesis: the basics. Ann. Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Article  Google Scholar 

  • Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC, Ahn DU (2003) Effect of far-infrared radiation on the antioxidant activity of rice hulls. J Agric Food Chem 51(15):4400–4403

    CAS  Article  PubMed  Google Scholar 

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67(1):59–64

    CAS  Article  Google Scholar 

  • Li CJ, Wang C, Pardee AB (1994) Camptothecin inhibits Tat-mediated transactivation of type 1 human immunodeficiency virus. J Biol Chem 269(10):7051–7054

    CAS  PubMed  Google Scholar 

  • Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol 12:39–50

    Article  Google Scholar 

  • Liu ZJ (2000) Drought-induced in vivo synthesis of camptothecin in Camptotheca acuminata seedlings. Physiol Plant 110:483–488

    CAS  Google Scholar 

  • Liu Z, Carpenter SB, Constantin RJ (1997) Camptothecin production in Camptotheca acuminata seedlings in response to shading and flooding. Can J Bot 75(2):368–373

    CAS  Article  Google Scholar 

  • Liu Y, Li X, Liu M, Cao B, Tan H, Wang J, Li X (2012) Responses of three different ecotypes of reed (Phragmites communis Trin.) to their natural habitats: leaf surface micro-morphology, anatomy, chloroplast ultrastructure and physio-chemical characteristics. Plant Physiol Biochem 51:159–167

    CAS  Article  PubMed  Google Scholar 

  • Liu Y, Song LL, Yu WW, Hu YY, Ma XH, Wu JS, Ying YQ (2015) Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Dene seedlings. Ind Crop Prod 66:137–143

    CAS  Article  Google Scholar 

  • Ma XH, Song LL, Yu WW, Hu YY, Liu Y, Wu JS, Ying YQ (2015) Growth, physiological, and biochemical responses of Camptotheca acuminata seedlings to different light environments. Front Plant Sci. doi:10.3389/fpls.2015.00321

    Google Scholar 

  • Mastropasqua L, Borraccino G, Bianco L, Paciolla C (2012) Light qualities and dose influence ascorbate pool size in detached oat leaves. Plant Sci 183:57–64

    CAS  Article  PubMed  Google Scholar 

  • Mathews S (2010) Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell 22:4–16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345):659–668

    CAS  PubMed  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  Article  PubMed  Google Scholar 

  • Moyo M, Finnie JF, van Staden J (2012) Microculture effects on leaf epidermis and root structure in Sclerocarya birrea subsp. caffra. S Afr J Bot 78:170–177

    Article  Google Scholar 

  • Nanya K, Ishigami Y, Hikosaka S, Goto E (2012) Effects of blue and red light on stem elongation and flowering of tomato seedlings. Acta Hortic 956:261–266

    Article  Google Scholar 

  • Nascimento LB, Leal-Costa MV, Coutinho MA, Moreira Ndos S, Lage CL, Barbi Ndos S, Costa SS, Tavares ES (2013) Increased antioxidant activity andchanges in phenolic profile of Kalanchoe pinnata (Lamarck) persoon (Crassu-laceae) specimens grown under supplemental blue light. Photochem Photobiol 89:391–399

    CAS  Article  PubMed  Google Scholar 

  • Oberlies NH, Kroll DJ (2004) Camptothecin and Taxol: historic achievements in natural products research. J Nat Prod 67(2):129–135

    CAS  Article  PubMed  Google Scholar 

  • Ouyang J, Wang X, Zhao B, Wang Y (2003) Light intensity and spectral quality influencing the callus growth of Cistanche deserticola and biosynthesis of phenylethanoid glycosides. Plant Sci 165(3):657–661

    CAS  Article  Google Scholar 

  • Patterson BD, MacRae EA, Ferguson IB (1984) Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139(2):487–492

    CAS  Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    CAS  Article  Google Scholar 

  • Prochazkova D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161(4):765–771

    CAS  Article  Google Scholar 

  • Sæbø A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss Org 41(2):177–185

    Article  Google Scholar 

  • Schmitt J, Wulff RD (1993) Light spectral quality, phytochrome and plant competition. Trends Ecol Evol 8:47–51

    CAS  Article  PubMed  Google Scholar 

  • Shao QS, Wang HZ, Guo HP, Zhou AC, Huang YQ, Sun YL, Li MY (2014) Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS One 9(2):e85996

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Saito Y, Nakashima H, Miyasaka J, Ohdoi K (2011) Light environment optimization for lettuce growth in plant factory. In: Vol. 18 Proceedings of the 18th IFAC World Congress, pp 605–609

  • Snider JL, Choinski JS, Wise RR (2009) Juvenile Rhus glabra leaves have higher temperatures and lower gas exchange rates than mature leaves when compared in the field during periods of high irradiance. J Plant Physiol 166(7):686–696

    CAS  Article  PubMed  Google Scholar 

  • Sriram D, Yogeeswari P, Thirumurugan R, Bal TR (2005) Camptothecin and its analogues: a review on their chemotherapeutic potential. Nat Prod Res 19(4):393–412

    CAS  Article  PubMed  Google Scholar 

  • Stepien P, Klobus G (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125(1):31–40

    CAS  Article  Google Scholar 

  • Strasser B, Sánchez-Lamas M, Yanovsky MJ, Casal JJ, Cerdán PD (2010) Arabidopsis thaliana life without phytochromes. Proc Natl Acad Sci USA 107:4776–4781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Talbott LD, Nikolova G, Ortiz A, Shmayevitch I, Zeiger E (2002) Green light reversal of blue light-stimulated stomatal opening is found in a wide range of plant species. Am J Bot 89:366–368

    Article  PubMed  Google Scholar 

  • Thomas RL, Jen JJ, Morr CV (1982) Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. J Food Sci 47(1):158–161

    Article  Google Scholar 

  • Tiwari A, Kumar P, Singh S, Ansari SA (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica 43(1):1–11

    CAS  Article  Google Scholar 

  • Trouwborst G, Oosterkamp J, Hogewoning SW, Harbinson J, van leperen W (2010) The responses of light interception, photosynthesis and fruit yield of cucumber to LED-lighting within the canopy. Physiol Plant 138:289–300

    CAS  Article  PubMed  Google Scholar 

  • Venema JH, Villerius L, van Hasselt PR (2000) Effect of acclimation to suboptimal temperature on chilling-induced photodamage: comparison between a domestic and a high-altitude wild Lycopersicon species. Plant Sci 152(2):153–163

    CAS  Article  Google Scholar 

  • Wang Y, Folta KM (2013) Contributions of green light to plant growth and development. Am J Bot 100:70–78

    CAS  Article  PubMed  Google Scholar 

  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57 (in Chinese)

    CAS  Google Scholar 

  • Wang Y, Yan X, Ma M (2003) Effects of color films on growth and camptothecin content in the leaves of Camptotheca acuninata seedlings. Acta Ecol Sin 24(5):869–875 (in Chinese)

    Google Scholar 

  • Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B Biol 96(1):30–37

    CAS  Article  Google Scholar 

  • Wellmann E (1983) UV radiation in photomorphogenesis. Photomorphogenesis. Springer, Berlin Heidelberg, pp 745–756

    Chapter  Google Scholar 

  • Wu JS, Ying YQ, Zhou GM, Shi BL, Jiang F, Zhang HJ, Hong ZB (2005) The effects of N, P and K fertilizer applied in leaf-producing plantation of Camptotheca acuminata decne. J Northeast For Univ 33(3):29–31 (in Chinese)

    CAS  Google Scholar 

  • Wu MC, Hou CY, Jiang CM, Wang YT, Wang CY, Chen HH, Chang HM (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedling. Food Chem 101(4):1753–1758

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LZ12C16001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasheng Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Liu, Y., Song, L. et al. Effect of Differential Light Quality on Morphology, Photosynthesis, and Antioxidant Enzyme Activity in Camptotheca acuminata Seedlings. J Plant Growth Regul 36, 148–160 (2017). https://doi.org/10.1007/s00344-016-9625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-016-9625-y

Keywords

  • Camptotheca acuminata
  • Light quality
  • Photosynthetic characteristics
  • Chlorophyll
  • Antioxidant system
  • Chloroplast ultrastructure