Skip to main content

Ethephon Increases Rubber Tree Latex Yield by Regulating Aquaporins and Alleviating the Tapping-Induced Local Increase in Latex Total Solid Content

Abstract

The concentration of phloem solute generally falls from leaves to roots. However, a local increase in latex total solid content (LILTSC) was identified near the tapping cut of rubber trees. To understand the mechanism of ethephon-stimulated latex yield, the formation and ethephon (an ethylene releaser) alleviation of the LILTSC near the tapping cut were examined. It was found that the LILTSC near the tapping cut of a tapped rubber tree was caused by the tapping-accelerated rubber biosynthesis which began following the first tapping and became significant after the fourth tapping. Ethephon stimulation markedly reduced the LILTSC. The latex yield change pattern upon ethephon stimulation was associated with the kinetic change of LILTSC and the decomposition dynamic of ethephon into ethylene. Once the LILTSC was reduced by ethylene release upon ethephon stimulation, the latex yield increased; however, when the ethylene release upon ethephon stimulation receded, the LILTSC was restored and the effect of ethephon stimulation dissipated. The reduction of LILTSC by ethephon stimulation could be ascribed to the translocation property of ethylene in plants and its regulation of aquaporins. Because maximum ethylene release upon tapping-cut-ethephon-application occured close to the tapping cut, the aquaporins were more up-regulated in this region, leading to a reduction of the LILTSC and an increase in latex yield. All these results suggest that the LILTSC near the tapping cut was caused by tapping; the ethephon-induced aquaporin up-regulation and LILTSC reduction are involved in the mechanism of ethephon-promoted latex yield.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. An F, Cai X, Rookes J, Xie G, Zou Z, Cahill D, Kong L (2015a) Latex dilution reaction during the tapping flow course of Hevea brasiliensis and the effect of Ethrel stimulation. Braz J Bot 38:1–11

    Article  Google Scholar 

  2. An F, Zou Z, Cai X, Wang J, Rookes J, Lin W, Cahill D, Kong L (2015b) Regulation of HbPIP2;3, a latex-abundant water transporter, is associated with latex dilution and yield in the rubber tree (Hevea brasiliensis Muell. Arg.). PLoS ONE 10:e125595

    Google Scholar 

  3. Arisz WH (1928) Physiology van het tappen. Arch Rubbercult 12:220–241

    Google Scholar 

  4. Audley BG, Archer BL, Carruthers IB (1976) Metabolism of ethephon (2-chloroethylphosphonic acid) and related compounds in Hevea brasiliensis. Arch Environ Contam Toxicol 4:183–200

    CAS  Article  PubMed  Google Scholar 

  5. Botaman S (1966) Preliminary physiological studies on the promotion of latex flow by plant growth regulators. J Rubber Res Inst Malaya 19:243–258

    Google Scholar 

  6. Buttery BR, Boatman SG (1966) Manometric measurement of turgor pressures in laticiferous phloem tissues. J Exp Bot 17:283–296

    Article  Google Scholar 

  7. D’Auzac J, Jacob JL, Chrestin H (1989) Physiology of rubber tree latex. CRC Press, Boca Raton

    Google Scholar 

  8. D’Auzac J, Bouteau F, Chrestin H, Clément A, Jacob JL, Lacrotte R, Prévot JC, Pujade-Renaud V, Rona JP (1993) Stress ethylene in Hevea brasiliensis: physiological, cellular and molecular aspects. In: Latché A, Balagué C, Pech P (eds) Cellular and molecular aspects of the plant hormone ethylene. Springer, Netherlands, pp 205–210

    Chapter  Google Scholar 

  9. D’Auzac J, Jacob JL, Prévôt JC, Clément A, Gallois R, Crestin H, Lacote R, Pujade-Renaud V, Gohet E (1997) The regulation of cis-polyisoprene production (natural rubber) from Hevea brasiliensis. In: Pandalai SG (ed) Recent research developments in plant physiology. Research Singpost, Trivandrum, pp 273–332

    Google Scholar 

  10. Die JV, Tammes P (1964) Studies on phloem exudation from Yucca flaccida Haw II: the translocation of assimilates. Acta Bot Neerl 13:84–90

    Article  Google Scholar 

  11. Dusotoit-Coucaud A, Brunel N, Kongsawadworakul P, Viboonjun U, Lacointe A, Julien JL, Chrestin H, Sakr S (2009) Sucrose importation into laticifers of Hevea brasiliensis in relation to ethylene stimulation of latex production. Ann Bot 104:635–647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Eklund L, Little CHA (1996) Laterally applied Ethrel causes local increases in radial growth and indole-3-acetic acid concentration in Abies balsamea shoots. Tree Physiol 16:509–513

    CAS  Article  PubMed  Google Scholar 

  13. Frey-Wyssling A (1932) Investigations on the dilution reaction and the movement of the latex of Hevea brasiliensis during tapping. Arch Rubbercult 16:285–327

    Google Scholar 

  14. Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    CAS  Article  PubMed  Google Scholar 

  15. Gooding E (1952a) Studies in the physiology of latex II: latex flow on tapping Hevea brasiliensis: associated changes in trunk diameter and latex concentration. New Phytol 51:11–29

    Article  Google Scholar 

  16. Gooding E (1952b) Studies in the physiology of latex III: effects of various factors on the concentration of latex of Hevea brasiliensis. New Phytol 51:139–153

    Article  Google Scholar 

  17. Hall SM, Milburn JA (1973) Phloem transport in Ricinus: its dependence on the water balance of the tissues. Planta 109:1–10

    CAS  Article  PubMed  Google Scholar 

  18. Hao B, Wu J, Meng C, Gao Z, Tan H (2004) Laticifer wound plugging in Hevea brasiliensis: the role of a protein-network with rubber particle aggregations in stopping latex flow and protecting wounded laticifers. J Rubber Res 7:281

    Google Scholar 

  19. Li H, Qin Y, Xiao X, Tang C (2011) Screening of valid reference genes for real-time RT-PCR data normalization in Hevea brasiliensis and expression validation of a sucrose transporter gene HbSUT3. Plant Sci 181:132–139

    CAS  Article  PubMed  Google Scholar 

  20. Luštinec J, Simmer J, Resing WL (1969) Trunk contraction of Hevea brasiliensis due to tapping. Biol Plant 11:236–244

    Article  Google Scholar 

  21. Mei QC, Wang TH (1978a) Physiology of rubber tree latex flow III: the phenomena of reverse distribution. Chin J Trop Agric 15–16

  22. Mei QC, Wang TH (1978b) Physiology of rubber tree latex flow V: preliminary results for the mechanism of ethephon promoted latex yield. Chin J Trop Agric 40–42

  23. Milburn JA (1972) Phloem transport in Ricinus. Pestic Sci 3:653–665

    Article  Google Scholar 

  24. Milburn JA (1974) Phloem transport in Ricinus: concentration gradients between source and sink. Planta 117:303–319

    CAS  Article  PubMed  Google Scholar 

  25. Mittler TE (1958) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin)(Homoptera, Aphididae) II: the nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J Exp Biol 35:74–84

    CAS  Google Scholar 

  26. Pakianathan SW (1975) Studies on displacement area on tapping in mature Hevea trees. In: Papers of the international rubber conference RRIO (ed) International rubber conference, Kuala Lumpur. Accessed 20 October 1975

  27. Pakianathan SW (1977) Some factors affecting yield response to stimulation with 2-chloroethyl phosphonic-acid. J Rubber Res Inst Malays 25:50–60

    Google Scholar 

  28. Paranjothy K, Sivakumaran S, Ming YW (1979) Ethylene formation in excised Hevea bark disks. J Rubber Res Inst Malays 27:159–167

    CAS  Google Scholar 

  29. Priyadarshan PM (2011) Biology of Hevea rubber. CAB International, Wallingford

    Book  Google Scholar 

  30. Ryan MG, Asao S (2014) Phloem transport in trees. Tree Physiol 34:1–4

    Article  PubMed  Google Scholar 

  31. Schweizer J (1949) Hevea latex as a biological substance. Arch Rubbercult 26:345

    Google Scholar 

  32. Sethuraj MR, Mathew NT (1992) Natural rubber: biology, cultivation and technology. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  33. Silpi U, Chantuma P, Kasemsap P, Thaler P, Thanisawanyangkura S, Lacointe A, Améglio T, Gohet E (2004) Spatial distribution of sucrose and metabolic activity in the laticiferous tissue of three Hevea brasiliensis clones: effects of tapping and Ethephon stimulation at trunk scale. In: Qiubio C, Jianman Z, Weifu L (eds) Proceedings of IRRDB conference 2004. China Agricultural Press, Kunming, pp 324–330

    Google Scholar 

  34. Sivakumaran S, Yeang HY, Ming YW (1984) Endogenous ethylene in Hevea bark tissues. J Rubber Res Inst Malays 32:155–163

    CAS  Google Scholar 

  35. Southorn WA (1968) Latex flow studies I. Electron microscopy of Hevea brasiliensis in the region of the tapping cut. J Rubber Res Inst Malays 20:176–186

    CAS  Google Scholar 

  36. Tang C, Qi J, Li H, Zhang C, Wang Y (2007) A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). J Biochem Biophys Method 70:749–754

    CAS  Article  Google Scholar 

  37. Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y (2010) The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree). Plant, Cell Environ 33:1708–1720

    CAS  Article  Google Scholar 

  38. Thao HS, Nguyen TT, Chuong DS, Bulantseva EA, Sal’Kova EG (1998) Effects of ethylene-releasing compounds on the yields and quality of Hevea latex. Appl Biochem Micro 34:316–319

    Google Scholar 

  39. Tingley MA (1944) Concentration gradients in plant exudates with reference to the mechanism of translocation. Am J Bot 31:30–38

    CAS  Article  Google Scholar 

  40. Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Tupy J (1973) The level and distribution pattern of latex sucrose along the trunk of Hevea brasiliensis Mull. Arg. was affected by the sink region induced by latex tapping. Phys Veg 11:1–11

    CAS  Google Scholar 

  42. Tupý J (1985) Some aspects of sucrose transport and utilization in latex producing bark of Hevea brasiliensis Muel. Arg. Biol Plant 27:51–64

    Article  Google Scholar 

  43. Wang J, An F, Cai X, Zou Z, Zhang W, Lin W (2014) Function characterization and expression analysis of aquaporins (HbPIP1 and HbPIP2) in Hevea brasiliensis. Sci Silvae Sin 50:69–75

    Google Scholar 

  44. Woodruff DR (2014) The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiol 34:5–14

    CAS  Article  PubMed  Google Scholar 

  45. Xiao ZY (2005) Protocols for latex physiological diagnosis measurement of Hevea. Chin J Trop Agric Sci 25:29–31

    Google Scholar 

  46. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    CAS  Article  Google Scholar 

  47. Yeang HY (1986) Impedance of latex exudation by the bark excision wound during tapping [Hevea brasiliensis]. J Nat Rubber Res 1:76–89

    Google Scholar 

  48. Yeang HY (2005) The kinetics of latex flow from the rubber tree in relation to latex vessel plugging and turgor pressure. J Rubber Res 8:160–181

    Google Scholar 

  49. Zhu J, Zhang Z (2009) Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signal Behav 4:1072–1074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Zimmermann MH (1957) Translocation of organic substances in trees I: the nature of the sugars in the sieve tube exudate of trees. Plant Physiol 32:288–291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

FA thanks Deakin University for the provision of a post graduate scholarship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Feng An or Lingxue Kong.

Ethics declarations

Conflict of interest

None to declare.

Funding

The National Natural Science Foundation of China (31100460), the Earmarked Fund for China Agriculture Research System (CARS-34), and the Fundamental Research Funds for Rubber Research Institute, CATAS (1630022015013). The funding sources played no role in the study design, data collection, data interpretation, paper writing, and decision to submit the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, F., Rookes, J., Xie, G. et al. Ethephon Increases Rubber Tree Latex Yield by Regulating Aquaporins and Alleviating the Tapping-Induced Local Increase in Latex Total Solid Content. J Plant Growth Regul 35, 701–709 (2016). https://doi.org/10.1007/s00344-016-9573-6

Download citation

Keywords

  • Hevea brasiliensis
  • Latex
  • Total solid content
  • Ethephon
  • Aquaporin