Skip to main content

What We Can Learn from Old Auxinology

Abstract

Auxin is the plant hormone with the longest history, harking back to the days of Charles Darwin. Modern research focuses on auxin signal transduction and auxin transport, and it has become more and more evident that auxin gradients shape the plant. Many of today’s successful concepts have early roots, which are easily forgotten. This review tries to highlight some of them, without striving for any completeness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bonner J (1934) The relation of hydrogen ions to the growth rate of the Avena coleoptile. Protoplasma 21:406–423

    CAS  Article  Google Scholar 

  2. Boysen-Jensen P (1913) Über die Leitung des phototropschen Reizes in der Avenakoleoptile. Ber dt Bot Ges 31:559–566

    Google Scholar 

  3. Cholodny N (1924) Über die hormonale Wirkung der Organspitze bei der geotropischen Krümmung. Ber Dt Bot Ges 42:356–362

    Google Scholar 

  4. Cleland RE (1971) Cell Wall Extension. Annu Rev Plant Physiol 22:197–222

    CAS  Article  Google Scholar 

  5. Cosgrove DJ (1996) Plant cell enlargement and the action of expansins. Bioessays 18:533–540

    CAS  Article  PubMed  Google Scholar 

  6. Darwin CH (1880) The power of movement in plants. John Murray, London

    Book  Google Scholar 

  7. Deichmann U (2004) Proteinforschung an Kaiser Wilhelm Instituten von 1930 bis 1950 im internationalen Vergleich. Ergebnisse. In Sachse C (ed) Ergebnisse Forschungsprogramm Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus Vol. 21. Forschungsprogramm Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus

  8. Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147:1553–1559

    CAS  PubMed  Google Scholar 

  9. Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Goldsmith MH (1977) The polar transport of auxin. Annu Rev Plant Physiol 28:439–478

    CAS  Article  Google Scholar 

  11. Hager A (1962) Untersuchungen über einen durch H+-Ionen induzierbaren Zellstreckungsmechanismus. Habilitation thesis, University of Munich

  12. Hager A, Menzel H, Krauss A (1971) Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta 100:47–75

    CAS  Article  PubMed  Google Scholar 

  13. Hasenstein KH, Evans ML (1988) Effects of cations on hormone transport in primary roots of Zea mays. Plant Physiol 86:890–894

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. Heyn ANJ (1931) Der Mechanismus der Zellstreckung. Rec Trav Bot Neerl 28:113–114

    Google Scholar 

  15. Heyn ANJ (1934) Weitere Untersuchungen über den Mechanismus der Zellstreckung und die Eigenschaften der Zellmembran. III. Die Änderung der Plastizität der Zellwände bei verschiedenen Organen. Jb wiss Bot 79:753–789

    Google Scholar 

  16. Kögl F, Erxleben H (1934) Über die Isolierung der Auxine a und b aus pflanzlichen Materialien. Hoppe-Seyler’s Z Physiol Chem 225:215–229

    Article  Google Scholar 

  17. Kögl F, Erxleben H (1939) Zur Ätiologie der malignen Tumoren. 1. Mitteilung über die Chemie der Tumoren. Z Physiol Chem 258:57–95

    Article  Google Scholar 

  18. Kögl F, Haagen-Smit AJ, Erxleben H (1933a) Studien über das Vorkommen von Auxinen im menschlichen und im tierischen Organismus. VII. Hoppe-Seyler’s Z Physiol Chem 220:137–161

    Article  Google Scholar 

  19. Kögl F, Hagen-Smit J, Erleben H (1933b) Über ein Phytohormon der Zellstreckung. Reindarstellung aus menschlichem Harn. Hoppe-Seyler’s Z Physiol Chem 214:241–261

    Article  Google Scholar 

  20. Kögl F, Hagen-Smit J, Erxleben H (1934) Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Hoppe-Seyler‘s Z. Physiol Chem 228:104–112

    Article  Google Scholar 

  21. Lado P, Rasi Caldogno F, Pennacchioni A, Marrè E (1973) Mechanism of growth promoting action of Fusicoccin. Interactions with auxins, and effects of inhibitors of respiration and protein synthesis. Planta 110:311–320

    CAS  Article  PubMed  Google Scholar 

  22. Laibach F, Kornmann P (1933) Zur Methodik der Wuchsstoffversuche. Planta 19:482–484

    CAS  Article  Google Scholar 

  23. Lockhart JA (1965) An analysis of irreversible plant elongation. J Theor Biol 8:264–275

    CAS  Article  PubMed  Google Scholar 

  24. Marrè E (1979) Fusicoccin: a tool in plant physiology. Annu Rev Plant Physiol 30:273–288

    Article  Google Scholar 

  25. Marrè E, Lado P, Caldogno FR, Colombo R (1971) Fusicoccin as a Tool for Analysis of Auxin Action. Atti Della Accademia Nazionale Dei Lincei Rendiconti-Classe Di Scienze Fisiche-Matematiche Naturali 50:45–49

    Google Scholar 

  26. Meissner KW (1932) Interferometrische Untersuchungen an Pflanzen. I. Über ein handliches Präzisonsinstrument zur Messung von Dimensionsänderungen aufgrund des interferometrischen Messprinzips. Jb wiss Bot 76:208–217

    Google Scholar 

  27. Ortega JKE (1985) Augmented growth equation for cell wall expansion. Plant Physiol 79:318–320

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Paal A (1919) Über phototropische Reizleitung. Jb wiss Bot 58:406–458

    Google Scholar 

  29. Rayle DL (1973) Auxin-induced hydrogen-ion excretion in Avena coleoptiles and its implications. Planta 114:63–73

    CAS  Article  PubMed  Google Scholar 

  30. Rayle D, Cleland RE (1970) Enhancement of wall loosening and elongation by acid solutions. Plant Physiol 46:250–253

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  31. Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121

    CAS  Article  PubMed  Google Scholar 

  32. Ruge U (1937) Untersuchung über den Einfluss des Heteroauxins auf das Streckungswachstum des Hypokotyls von Helianthus annuus. Z f Botanik 31:1–56

    CAS  Google Scholar 

  33. Söding H (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber dt Bot Ges 41:396–499

    Google Scholar 

  34. Söding H (1931) Wachstum und Wanddehnbarkeit bei der Haferkoleoptile. Jb wiss Bot 74:127–151

    Google Scholar 

  35. Söding H (1934) Über die Wachstumsmechanik der Haferkoleoptile. Jb wiss Bot 79:231–255

    Google Scholar 

  36. Strugger S (1932) Die Beeinflussung des Wachstums und des Geotropismus durch die Wasserstoffionen. Ber dt Bot Ges 50 (Anhang): 77–92

  37. Thiman KV (1935) On the plant hormone produced by Rhizopus suinus. J Biol Chem 109:279–291

    Google Scholar 

  38. Thimann KV, Koepfli JB (1935) Identity of the growth-promoting and root-forming substances of plants. Nature 135:101–102

    CAS  Article  Google Scholar 

  39. Thimann KV, Schneider CL (1938) The role of salts, hydrogen ions concentration and agar in the response to Avena coleoptiles to auxins. Am J Bot 25:270–280

    CAS  Article  Google Scholar 

  40. Troyer JR (2008) Error or fraud in science. Auxins A and B and animal tumor proteins. J N C Acad Sci 124:1–5

    Google Scholar 

  41. Vanderhoef LN, Stahl CA (1976) Separation of 2 responses to auxin by means of cytokinin inhibition. PNAS 72:1822–1825

    Article  Google Scholar 

  42. Vanderhoef LN, Stahl CA, Lu TYS (1976) Two elongation responses to auxin respond differently to protein-synthesis inhibition. Plant Physiol 58:402–404

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  43. Went FW (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  44. Wildman SG (1997) The auxin-a, b enigma: scientific fraud or scientific ineptitude? Plant Growth Regulat 22:37–68

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hartwig Lüthen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lüthen, H. What We Can Learn from Old Auxinology. J Plant Growth Regul 34, 702–707 (2015). https://doi.org/10.1007/s00344-015-9527-4

Download citation

Keywords

  • Auxin history of science
  • Polar transport
  • Elongation growth
  • Acid growth theory
  • Cell wall loosening