How Jasmonates Earned their Laurels: Past and Present

Abstract

The histories of research regarding all plant hormones are similar. Identification and structural elucidation have been followed by analyses of their biosynthesis, distributions, signaling cascades, roles in developmental or stress response programs, and crosstalk. Jasmonic acid (JA) and its derivatives comprise a group of plant hormones that were discovered recently, compared to auxin, abscisic acid, cytokinins, gibberellic acid, and ethylene. Nevertheless, there have been tremendous advances in JA research, following the general progression outlined above and parallel efforts focused on several other “new” plant hormones (brassinosteroids, salicylate, and strigolactones). This review focuses on historical aspects of the identification of jasmonates, and characterization of their biosynthesis, distribution, perception, signaling pathways, crosstalk with other hormones and roles in plant stress responses and development. The aim is to illustrate how our present knowledge on jasmonates was generated and how that influences current efforts to extend our knowledge.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    http://www.theark.ch/media/theark/document/0/5772-5__Forum_Wolfender_EPGL.pdf;

  2. 2.

    http://www.oxylipins.uni-goettingen.de/methods.php?path=methods&caption=Oxylipin%20Profiling;

  3. 3.

    http://www.k-state.edu/lipid/lipidomics/service.htm.

References

  1. Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL (2009) tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262–265

    CAS  PubMed  Article  Google Scholar 

  2. Acosta IF, Gasperini D, Chételat A, Stolz S, Santuari L, Farmer EE (2013) Role of NINJA in root jasmonate signaling. Proc Natl Acad Scie USA 110:15473–15478

    CAS  Article  Google Scholar 

  3. Adie BAT, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano J-J, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  4. Alborn H, Turlings T, Jones T, Stenhagen G, Loughirn J, Tumlinson J (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    CAS  Article  Google Scholar 

  5. Alborn H, Jones A, Stenhagen G, Tumlinson J (2000) Identification and synthesis of volicitin and related components from beet armyworm oral secretions. J Chem Ecol 26:203–220

    CAS  Article  Google Scholar 

  6. Aldrige D, Galt S, Giles D, Turner W (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C:1623–1627

  7. Andreou A, Feussner I (2009) Lipoxygenases - Structure and reaction mechanism. Phytochemistry 70:1504–1510

    CAS  PubMed  Article  Google Scholar 

  8. Andresen I, Becker W, Schlüter K, Burges J, Parthier B, Apel K (1992) The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol 19:193–204

    CAS  PubMed  Article  Google Scholar 

  9. Bachmann A, Hause B, Maucher H, Garbe E, Vörös K, Weichert H, Wasternack C, Feussner I (2002) Jasmonate-induced lipid peroxidation in barley leaves initiated by distinct 13-LOX forms of chloroplasts. Biol Chem 383:1645–1657

    CAS  PubMed  Article  Google Scholar 

  10. Baker T, Nishida R, Roelofs W (1981) Close-range attraction of female oriental fruit moths to herbal scent of male hairpencil. Science 214:1359–1361

    CAS  PubMed  Article  Google Scholar 

  11. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    PubMed Central  PubMed  Article  Google Scholar 

  12. Balazadeh S (2014) Stay-green not always stays green. Mol Plant 7:1264–1266

    CAS  PubMed  Article  Google Scholar 

  13. Baldwin IT, Halitschke R, Kessler A, Schittko U (2001) Merging molecular and ecological approaches in plant-insect interactions. Curr Opin Plant Biol 4:351–358

    CAS  PubMed  Article  Google Scholar 

  14. Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16:249–257

    PubMed  Article  CAS  Google Scholar 

  15. Bell E, Creelman R, Mullet J (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  16. Berger S, Bell E, Mullet J (1996) Two methyl jasmonate-insensitive mutants show altered expression of AtVsp in response to methyl jasmonate and wounding. Plant Physiol 111:525–531

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Bhosale R, Jewell J, Hollunder J, Koo A, Vuyisteke M, Michoel T, Hilson P, Goossens A, Howe G, Brose J, Maere S (2013) Predicting gene function from uncontrolled expression variation among individual wild-type arabidopsis plants. Plant Cell 25:2865–2877

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Birkenmeier G, Ryan CA (1998) Wound signaling in tomato plants: evidence that ABA is not a primary signal for defense gene activation. Plant Physiol 117:687–693

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  19. Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan T, Mueller M, Xia Z-Q, Zenk M (1995) The octadecanoid pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Blechert S, Bockelmann C, Füßlein M, von Schrader T, Stelmach B, Niesel U, Weiler E (1999) Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta 207:470–479

    CAS  Article  Google Scholar 

  21. Bosch M, Wright L, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A (2014) Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol 166:396–410

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  22. Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  23. Böttcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704

    PubMed  Article  CAS  Google Scholar 

  24. Böttcher C, Weiler E (2007) cyclo -Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637

    PubMed  Article  CAS  Google Scholar 

  25. Bowles D (1997) The wound response of tomato plants. Essays Biochem 32

  26. Brash AR (2009) Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–1531

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  27. Brash AR, Baertschi S, Ingram C, Harris T (1987) On non-cyclooxygenase protaglandin synthesis in the sea whip coral, Plexaura homomalla: an 8(R)-lipxygenase pathway leads to formation of an alpha-ketol and racemic prostanoid. J Biol Chem 262:15829–15839

    CAS  PubMed  Google Scholar 

  28. Brash AR, Baertschi S, Ingram C, Harris T (1988) Isolation and characterization of natural allene oxides: unstable intermediates in the metabolism of lipid hydroperoxides. Proc Natl Acad Sci USA 85:3382–3386

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  29. Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Y-s Kim, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  30. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T (2001) X-Ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Structure 9:419–429

    CAS  PubMed  Article  Google Scholar 

  31. Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T (2006) Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. Proc Natl Acad Sci USA 103:14337–14342

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  32. Browse J (2009a) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    CAS  PubMed  Article  Google Scholar 

  33. Browse J (2009b) Jasmonate: Preventing the maize tassel from getting in touch with his feminine side. Sci Signal 2:pe9

  34. Browse J (2009c) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546

    CAS  PubMed  Article  Google Scholar 

  35. Campos M, Kang J-H, Howe G (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. Castillo MC, Martinez C, Buchala A, Metraux J-P, Leon J (2004) Gene-specific involvement of β-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94

    PubMed Central  CAS  Article  Google Scholar 

  37. Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S, Denby KJ, Holub EB, Cahill DM, Manners JM, Schenk PM, Beynon J, Kazan K (2012) MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–555

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  38. Chaudhry B, Müller-Uri F, Cameron-Mills V, Gough S, Simpson D, Skriver K, Mundy J (1994) The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J 6:815–824

    CAS  PubMed  Article  Google Scholar 

  39. Chauvin A, Caldelari D, Wolfender J-L, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575

    CAS  PubMed  Article  Google Scholar 

  40. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS ONE 3:e1904

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  41. Chehab EW, Kim S, Savchenko T, Kliebenstein D, Dehesh K, Braam J (2011) Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiol 156:770–778

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  42. Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  43. Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, Li C (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23:3335–3352

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  44. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–2916

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  45. Chen Y-L, Lee C-Y, Cheng K-T, Huang R-N, Nam H, Chen Y-R (2014) Quantitative peptidomics study reveals that a wound-induced peptide from pr-1 regulates immune signaling in tomato. Plant Cell 26:4135–4148

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  47. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    CAS  PubMed  Article  Google Scholar 

  48. Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276:4682–4692

    CAS  PubMed  Article  Google Scholar 

  49. Chrombie L, Elliot M (1961) Chemistry of pyrethrins. Fortschr Chem Org Naturstoffe 19:120–164

    Google Scholar 

  50. Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–1559

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  51. Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    CAS  PubMed  Article  Google Scholar 

  52. Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70:1600–1609

    CAS  PubMed  Article  Google Scholar 

  53. Conconi A, Smerdon M, Howe G, Ryan C (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383:826–829

    CAS  PubMed  Article  Google Scholar 

  54. Conrath U (2011) Molecular aspects of defence priming. Trends Plant Sci 16:524–531

    CAS  PubMed  Article  Google Scholar 

  55. Cross B, Webster G (1970) New metabolites of Gibberella fujikuroi. Part XV. N-jasmonoyl- and N-dihydrojasmonoyl-isoleucine. J Chem Soc C 1970:1839–1842

    Article  Google Scholar 

  56. Dammann C, Rojo E, Sanchez-Serrano J (1997) Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J 11:773–782

    CAS  PubMed  Article  Google Scholar 

  57. Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (–)-Jasmonic acid, a plant growth inhibitor in pericarp. Planta 155:530–535

    Article  Google Scholar 

  58. Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE, Larson TR, Graham IA (2011) 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23:583–599

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  59. De Geyter N, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–359

    PubMed  Article  CAS  Google Scholar 

  60. De Leon P, Schmelz EA, Gaggero C, Castro A, Alvarez A, Montesano M (2012) Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid upon Botrytis cinerea infection. Mol Plant Physiol 13:960–974

    Google Scholar 

  61. Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helv Chim Acta 45:675–685

    CAS  Article  Google Scholar 

  62. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466

    CAS  PubMed  Article  Google Scholar 

  63. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    CAS  PubMed  Article  Google Scholar 

  64. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    CAS  PubMed  Article  Google Scholar 

  65. Doares S, Narvaez-Vasquez J, Conconi A, Ryan CA (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Doherty H, Selvendran R, Bowles D (1988) The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol Mol Plant Pathol 33:377–384

    CAS  Article  Google Scholar 

  67. Dorka R, Miersch O, Wasternack C, Weik P (2007) Chronobiological phenomena and seasonal changes in jasmonate levels during the course of the year and under constant conditions in mistletoe (Viscum album L.). Phytomedicine 14(Suppl VII):23

  68. Dunaeva M, Goebel C, Wasternack C, Parthier B, Goerschen E (1999) The jasmonate-induced 60 kDa protein of barley exhibits N-glycosidase activity in vivo. FEBS Lett 452:263–266

    CAS  PubMed  Article  Google Scholar 

  69. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotech 30:127–131

    CAS  Article  Google Scholar 

  70. Farmaki T, Sanmartin M, Jimenez P, Paneque M, Sanz C, Vancanneyt G, Leon J, Sanchez-Serrano J (2007) Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J Exp Bot 58:555–568

    CAS  PubMed  Article  Google Scholar 

  71. Farmer EE (2001) Surface-to-air signals. Nature 411:854–856

    CAS  PubMed  Article  Google Scholar 

  72. Farmer EE (2007) Plant biology: jasmonate perception machines. Nature 448:659–660

    CAS  PubMed  Article  Google Scholar 

  73. Farmer EE (2014) Leaf defence. Oxford University Press, Oxford

  74. Farmer EE, Mueller M (2013) ROS-mediated lipid peroxiidation and RES-activated signaling. Ann Rev Plant Biol 64:429–450

    CAS  Article  Google Scholar 

  75. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  76. Farmer EE, Johnson R, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98:995–1002

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    CAS  PubMed  Article  Google Scholar 

  78. Farmer EE, Howe G, Pearce G, Schaller A (2008) Obituary: Clarence A. “Bud” Ryan. Phytochemistry 69:1454–1456

    CAS  PubMed  Article  Google Scholar 

  79. Farmer EE, Gasperini D, Acosta I (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204:282–288

    CAS  PubMed  Article  Google Scholar 

  80. Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463

    CAS  PubMed  Article  Google Scholar 

  81. Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, Wei N, Deng XW (2003) The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell 15:1083–1094

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  82. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297

    CAS  Article  Google Scholar 

  83. Feussner I, Hause B, Vörös K, Parthier B, Wasternack C (1995) Jasmonate-induced lipoxygenase forms are localized in chloroplasts of barley leaves (Hordeum vulgare cv. Salome). Plant J 7:949–957

    CAS  Article  Google Scholar 

  84. Feussner I, Balkenhohl T, Porzel A, Kühn H, Wasternack C (1997) Structural elucidation of oxygenated storage lipids in cucumber cotyledons - implication of lipid body lipoxygenase in lipid mobilization during germination. J Biol Chem 272:21635–21641

    CAS  PubMed  Article  Google Scholar 

  85. Feys B, Benedetti C, Penfold C, Turner J (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistent to a bacterial pathogen. Plant Cell 6:751–759

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  86. Fingrut O, Flescher E (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16:608–616

    CAS  PubMed  Article  Google Scholar 

  87. Fonseca S, Chico JM, Solano R (2009a) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547

    CAS  PubMed  Article  Google Scholar 

  88. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009b) (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    CAS  PubMed  Article  Google Scholar 

  89. Frago E, Dicke M, Godfray H (2012) Insect symbionts as hidden players in insect–plant interactions. Trends Ecol & Evol 27:705–711

    Article  Google Scholar 

  90. Froehlich J, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450 s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. Fukui H, Koshimizu K, Usuda S, Yamazaki Y (1977) Isolation of plant growth regulators from seeds. Agric Biol Chem 41:175–180

    CAS  Article  Google Scholar 

  92. Garcion C, Metraux J-P (2006) Salicylic acid. In: Hedden P, Thomas S (eds) Plant Hormone Signaling. Blackwell Publishing, Harpenden, pp 230–262

    Google Scholar 

  93. Gatz C (2013) From pioneers to team players: tGA transcription factors provide a molecular link between different stress pathways. Mol Plant Microbe Interact 26:151–159

    CAS  PubMed  Article  Google Scholar 

  94. Gfeller A, Baerenfaller K, Loscos J, Chételat A, Baginsky S, Farmer EE (2011) Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol 156:1797–1807

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. Gidda S, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900

    CAS  PubMed  Article  Google Scholar 

  96. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J Biol Chem 283:16400–16407

    CAS  PubMed  Article  Google Scholar 

  97. Glauser G, Boccard J, Rudaz S, Wolfender J-L (2009a) Mass spectrometry-based metabolomics oriented by correlation analysis for wound-induced molecule discovery: identification of a novel jasmonate glucoside. Phytochem Anal 21:95–101

    Article  CAS  Google Scholar 

  98. Glauser G, Dubugnon L, Mousavi SAR, Rudaz S, Wolfender J-L, Farmer EE (2009b) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. Göbel C, Feussner I (2009) Methods for the analysis of oxylipins in plants. Phytochemistry 70:1485–1503

    PubMed  Article  CAS  Google Scholar 

  100. Görschen E, Dunaeva M, Hause B, Reeh I, Wasternack C, Parthier B (1997a) Expression of the ribosome-inactivating protein JIP60 from barley in transgenic tobacco leads to an abnormal phenotype and alterations on the level of translation. Planta 202:470–478

    PubMed  Article  Google Scholar 

  101. Görschen E, Dunaeva M, Reeh I, Wasternack C (1997b) Overexpression of the jasmonate-inducible 23 kDa protein (JIP 23) from barley in transgenic tobacco leads to the repression of leaf proteins. FEBS Lett 419:58–62

    PubMed  Article  Google Scholar 

  102. Green T, Ryan CA (1972) Wound-induced proteinase inhibitor in plant defense: a possible defense mechanism against insects. Science 175:776–777

    CAS  PubMed  Article  Google Scholar 

  103. Gundlach H, Müller M, Kutchan T, Zenk M (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Nat Acad Sci USA 89:2389–2393

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  104. Guo Y, Gan S-S (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    CAS  PubMed  Article  Google Scholar 

  105. Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant-Microbe Interact 22:763–772

    CAS  PubMed  Article  Google Scholar 

  106. Halitschke R, Baldwin IT (2004) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Reg 23:238–245

    CAS  Article  Google Scholar 

  107. Hamberg M (1988) Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochem Biophys Res Commun 156:543–550

    CAS  PubMed  Article  Google Scholar 

  108. Hamberg M, Fahlstadius P (1990) Allene oxide cyclase: a new enzyme in plant lipid metabolism. Arch Biochem Biophys 276:518–526

    CAS  PubMed  Article  Google Scholar 

  109. Hamberg M, Gardner HW (1992) Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophys Acta (BBA) - Lipids and Lipid. Metabolism 1165:1–18

    CAS  Google Scholar 

  110. Hamberg H, Miersch O, Sembdner G (1988) Absolute configuration of 12-oxo-10,15(Z)-phytodienoic acid. Lipids 23:521–524

    CAS  Article  Google Scholar 

  111. Hannapel DJ (2010) A model system of development regulated by the long-distance transport of mRNA. J Int Plant Biol 52:40–52

    CAS  Article  Google Scholar 

  112. Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63:6267–6281

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  113. Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    CAS  PubMed  Article  Google Scholar 

  114. Hause B, Zur Nieden U, Lehmann J, Wasternack C, Parthier B (1994) Intracellular localization of jasmonate-induced proteins in barley leaves. Bot Acta 107:333–341

    CAS  Article  Google Scholar 

  115. Hause B, Demus U, Teichmann C, Parthier B, Wasternack C (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641–649

    CAS  PubMed  Article  Google Scholar 

  116. Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C (2000) Tissue-specific oxylipin signature of tomato flowers - allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles. Plant J 24:113–126

    CAS  PubMed  Article  Google Scholar 

  117. Hedden P, Thomas S (2006) Plant hormone signaling. Monogragraph Blackwell

  118. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  119. Helder H, Miersch O, Vreugdenhil D, Sembdner G (1993) Occurrence of hydroxylated jasmonic acids in leaflets of Solanum demissum plants grown under long- and short-day conditions. Physiol Plant 88:647–653

    CAS  Article  Google Scholar 

  120. Hertel S, Knöfel H-D, Kramell R, Miersch O (1997) Partial purification and characterization of a jasmonic acid conjugate cleaving amidohydrolase from the fungus Botryodiplodia theobromae. FEBS Lett 407:105–110

    CAS  PubMed  Article  Google Scholar 

  121. Hofmann E, Zerbe P, Schaller F (2006) The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–3217

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  122. Hornung E, Walther M, Kühn H, Feussner I (1999) Conversion of cucumber linoleate 13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis. Proc Natl Acad Sci USA 96:4192–4197

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  123. Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  PubMed  Article  Google Scholar 

  124. Howe GA (2001) Cyclopentanone signals for plant defense: remodeling the jasmonic acid response. Proc Natl Acad Sci USA 98:12317–12319

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  125. Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Article  Google Scholar 

  126. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Article  Google Scholar 

  127. Howe GA, Lee G, Itoh A, Li L, DeRocher A (2000) Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol 123:711–724

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  128. Hsieh H-L, Okamoto H (2014) Molecular interaction of jasmonate and phytochrome A signalling. J Exp Bot 65:2847–2857

    PubMed  Article  Google Scholar 

  129. Hsieh H-L, Okamoto H, Wang M, Ang L-H, Matsui M, Goodman H, Deng XW (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev 14:1958–1970

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls jasmonate-regulated plant defense. Mol Cell 50:504–515

    CAS  PubMed  Article  Google Scholar 

  131. Huot B, Yao J, Montgomery B, He S (2014) Different shades of JAZ during plant growth and defense. Mol Plant 7:1267–1287

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  132. Ibrahim A, Schütz A-L, Galano J-M, Herrfurth C, Feussner K, Durand T, Brodhun F, Feussner I (2011) The alphabet of galactolipids in Arabidopsis thaliana. Front Plant Sci 2:95

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  133. Ishiguro S, Kwai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation. Plant Cell 13:2191–2209

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  134. Kamuro Y, Hirakawa S, Fujisawa H (2000) Comprising a jasmonic acid derivative, 3-oxo-2-pentyl-cyclopentaneacetic acid, c3-c4 alkyl ester and carrier. US patent US6093683 A:No of application: US6093683 A

  135. Katsir L, Chung HS, Koo AJ, Howe GA (2008a) Jasmonate signaling: a conserved mechanism of hormone sensing. Curr Opin Plant Biol 11:428–435

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  136. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008b) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  137. Kazan K, Lyons R (2014) Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 26:2285–2309

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  138. Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  139. Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087–4100

    CAS  PubMed  Article  Google Scholar 

  140. Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    CAS  PubMed  Article  Google Scholar 

  141. Kazan K, Manners JM (2013) MYC2: the Master in Action. Mol Plant 6:686–703

    CAS  PubMed  Article  Google Scholar 

  142. Kennedy GG (2003) TOMATO, PESTS, PARASITOIDS, AND PREDATORS: tritrophic Interactions Involving the Genus Lycopersicon. Ann Rev Entomol 48:51–72

    CAS  Article  Google Scholar 

  143. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    CAS  PubMed  Article  Google Scholar 

  144. Kessler A, Heil M (2011) The multiple faces of indirect defences and their agents of natural selection. Funct Ecol 25:348–357

    Article  Google Scholar 

  145. Kessler A, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    CAS  PubMed  Article  Google Scholar 

  146. Kessler D, Diezel C, Baldwin IT (2010) Changing pollinators as a means of escaping herbivores. Curr Biol 20:237–242

    CAS  PubMed  Article  Google Scholar 

  147. Kienow L, Schneider K, Bartsch M, Stuible H-P, Weng H, Miersch O, Wasternack C, Kombrink E (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59:403–419

    CAS  PubMed  Article  Google Scholar 

  148. Kitaoka N, Matsubara T, Sato M, Takahashi K, Wakuta S, Kawaide H, Matsui H, Nabeta K, Matsuura H (2011) Arabidopsis CYP94B3 encodes jasmonyl-l-isoleucine 12-hydroxylase, a key enzyme in the oxidative catabolism of jasmonate. Plant Cell Physiol 52:1757–1765

    CAS  PubMed  Article  Google Scholar 

  149. Knöfel H-D, Brückner C, Kramell R, Sembdner G, Schreiber K (1984) A radioimmunoassay for jasmonic acid. Biochem Physiol Pflanzen 179:317–325

    Article  Google Scholar 

  150. Koda Y (1992) The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol 135:155–199

    CAS  PubMed  Article  Google Scholar 

  151. Koo AJK, Howe GA (2009) The wound hormone jasmonate. Phytochemistry 70:1571–1580

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  152. Koo AJ, Howe GA (2012) Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front Plant Sci 3:19

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  153. Koo AJK, Chung HS, Kobayashi Y, Howe GA (2006) Identification of a peroxisomal acyl-activating enzyme involved in the biosynthesis of jasmonic acid in Arabidopsis. J Biol Chem 281:33511–33520

    CAS  PubMed  Article  Google Scholar 

  154. Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986

    CAS  PubMed  Article  Google Scholar 

  155. Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-L-isoleucine. Proc Nat Acad Sci USA 108:9298–9303

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  156. Kramell R, Miersch O, Hause B, Ortel B, Parthier B, Wasternack C (1997) Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett 414:197–202

    PubMed  Article  Google Scholar 

  157. Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the ‘oxylipin signature’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–187

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  158. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey K-M, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci USA 108:5891–5896

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  159. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    CAS  PubMed  Article  Google Scholar 

  160. Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler E (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol 31:323–335

    CAS  PubMed  Article  Google Scholar 

  161. Laudert D, Schaller F, Weiler E (2000) Transgenic Nicotiana tabacum and Arabidopsis thaliana plants overexpressing allene oxide synthase. Planta 211:163–165

    CAS  PubMed  Article  Google Scholar 

  162. Lechner E, Xie D, Grava S, Pigaglio E, Planchais S, Murray J, Genschik P (2002) The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J Biol Chem 277:50069–50080

    CAS  PubMed  Article  Google Scholar 

  163. Lee D-S, Nioche P, Hamberg M, Raman CS (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–368

    CAS  PubMed  Article  Google Scholar 

  164. Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    CAS  Article  Google Scholar 

  165. Leon-Reyes A, Van der Does D, De Lange E, Delker C, Wasternack C, Van Wees S, Ritsema T, Pieterse C (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  166. Li L, Li C, Howe GA (2001) Genetic analysis of wound signaling in tomato. Evidence for a dual role of jasmonic acid in defence and female fertility. Plant Physiol 127:1414–1417

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  167. Li C, Liu G, Xu C, Lee G, Bauer P, Ling H, Ganal M, Howe GA (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:646–661

    Google Scholar 

  168. Li L, McCaig B, Wingerd B, Wang J, Whaton M, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  169. Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-Oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  170. Lorenzo O, Solano R (2005) Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol 8:532–540

    CAS  PubMed  Article  Google Scholar 

  171. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  172. Lucas-Barbosa D, van Loon J, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry 72:1647–1654

    CAS  PubMed  Article  Google Scholar 

  173. Mandaokar A, Browse J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  174. Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008

    CAS  PubMed  Article  Google Scholar 

  175. Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    CAS  PubMed  Article  Google Scholar 

  176. Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199–213

    CAS  PubMed  Article  Google Scholar 

  177. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  178. McConn M, Creelman R, Bell E, Mullet J, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  179. Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall C, Hause B, Jez J, Kaiser M, Kombrink E (2014) A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 10:830–836

    CAS  PubMed  Article  Google Scholar 

  180. Meldau S, Erb M, Baldwin IT (2012) Defence on demand: mechanisms behind optimal defence patterns. Ann Bot 110:1503–1514

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  181. Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70:1560–1570

    CAS  PubMed  Article  Google Scholar 

  182. Memelink J, Verpoorte R, Kijne J (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    CAS  PubMed  Article  Google Scholar 

  183. Menke F, Champion A, Kijne J, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-d. EMBO-J 18:4455–4463

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  184. Meyer A, Miersch O, Büttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8

    CAS  Article  Google Scholar 

  185. Miao Y, Zentgraf U (2007) The antagonist function of Arabidopsis WRKY53 and ESR/ESP in leaf senescence is modulated by the jasmonic and salicylic acid equilibrium. Plant Cell 19:819–830

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  186. Mielke K, Forner S, Kramell R, Conrad U, Hause B (2011) Cell-specific visualization of jasmonates in wounded tomato and Arabidopsis leaves using jasmonate-specific antibodies. New Phytol 190:1069–1080

    CAS  PubMed  Article  Google Scholar 

  187. Miersch O, Wasternack C (2000) Octadecanoid and jasmonate signaling in tomato (Lycopersicon esculentum Mill.) leaves: endogenous jasmonates do not induce jasmonate biosynthesis. Biol Chem 381:715–722

    CAS  PubMed  Article  Google Scholar 

  188. Miersch O, Meyer A, Vorkefeld S, Sembdner G (1986) Occurrence of (+)-7-iso-jasmonic acid in Vicia faba L. and its biological activity. Plant Growth Regul 5:91–100

    CAS  Article  Google Scholar 

  189. Miersch O, Preiss A, Sembdner G, Schreiber K (1987) (+)-7-iso-Jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochemistry 26:1037–1039

    CAS  Article  Google Scholar 

  190. Miersch O, Kramell R, Parthier B, Wasternack C (1999) Structure-activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry 50:353–361

    CAS  Article  Google Scholar 

  191. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127

    CAS  PubMed  Google Scholar 

  192. Monte I, Hamberg M, Chini A, Gimenez-Ibanez S, Garcia-Casado G, Porzel A, Pazos F, Boter M, Solano R (2014) Rational design of a ligand-based antagonism of jasmonate perception. Nat Chem Biol 10:671–676

    CAS  PubMed  Article  Google Scholar 

  193. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–957

    CAS  PubMed  Article  Google Scholar 

  194. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    CAS  PubMed  Article  Google Scholar 

  195. Mueller MJ, Brodschelm W (1994) Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal Biochem 218:425–435

    CAS  PubMed  Article  Google Scholar 

  196. Mueller MJ, Mene-Saffrane L, Grun C, Karg K, Farmer EE (2006) Oxylipin analysis methods. Plant J 45:472–489

    CAS  PubMed  Article  Google Scholar 

  197. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  198. Müller A, Düchting P, Weiler E (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56

    PubMed  Article  CAS  Google Scholar 

  199. Müller-Uri F, Parthier B, Nover L (1988) Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis. Planta 76:241–247

    Article  Google Scholar 

  200. Nakamura Y, Partz C, Brandt W, David A, Rendon-Anaya M, Herrera-Estrella A, Mithöfer A, Boland W (2014) Synthesis of 6-substituted 1-oxoindanoyl isoleucine conjugates and modeling studies with the COI1-JAZ coreceptor complex of lima bean. J Chem Ecol 40:687–699

    CAS  PubMed  Article  Google Scholar 

  201. Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–1656

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  202. Neumann P, Brodhun F, Sauer K, Herrfurth C, Hamberg M, Brinkmann J, Scholz J, Dickmanns A, Feussner I, Ficner R (2012) Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol 160:1251–1266

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  203. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser H, Bowles D (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    PubMed  Article  Google Scholar 

  204. O’Donnell PJ, Schmelz E, Block A, Miersch O, Wasternack C, Jones JB, Klee HJ (2003) Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response. Plant Physiol 133:1181–1189

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  205. Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusido R, Palazon J, Goossens A (2014) Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J 12:971–983

    CAS  PubMed  Article  Google Scholar 

  206. Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450. J Biol Chem 270:8487–8494

    CAS  PubMed  Article  Google Scholar 

  207. Parchmann S, Gerlach H, Mueller MJ (1997) Induction of 12-oxo-phytodienoic acid in wounded plants and elicitated plant cell cultures. Plant Physiol 115:1057–1064

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  208. Park J-H, Halitschke R, Kim H, Baldwin IT, Feldmann K, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12

    PubMed  Article  Google Scholar 

  209. Parthier B (1990) Jasmonates: hormonal regulators or stress factors in leaf senescence? J Plant Growth Regul 9:57–63

    CAS  Article  Google Scholar 

  210. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  211. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  212. Pearce G, Strydom D, Johnson S, Ryan CA (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–897

    CAS  PubMed  Article  Google Scholar 

  213. Pena-Cortes H, Willmitzer L, Sanchez-Serrano J (1991) Abscisic acid mediates wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3:963–972

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  214. Pena-Cortes H, Albrecht T, Prat S, Weiler E, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    CAS  Article  Google Scholar 

  215. Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol 53:632–640

    CAS  PubMed  Article  Google Scholar 

  216. Perez AC, Goossens A (2013) Jasmonate signalling: a copycat of auxin signalling? Plant Cell Environ 36:2071–2084

    CAS  PubMed  Article  Google Scholar 

  217. Pieterse CM, Pelt JV, Ton J, Parchmann S, Mueller M, Buchala A, Metreaux J-P, Loon LV (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    CAS  Article  Google Scholar 

  218. Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Article  Google Scholar 

  219. Pieterse CM, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Article  Google Scholar 

  220. Pieterse CM, Pierik R, Van Wees S (2014a) Different shades of JAZ during plant growth and defense. New Phytol 204:261–264

    PubMed  Article  Google Scholar 

  221. Pieterse CM, Zamioudis C, Berendsen R, Weller D, Van Wees S, Bakker P (2014b) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    CAS  PubMed  Article  Google Scholar 

  222. Pott M, Hippauf F, Saschenbreker S, Chen F, Ross JJ, Kiefer I, Slusarenko A, Noel J, Pichersky E, Effmert U, Piechulla B (2004) Biochemical and structural characterization of benzenoid carboxyl methyltransferases involved in floral scent production in Stephanotis floribunda and Nicotiana suaveolens. Plant Physiol 135:1946–1955

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  223. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–1814

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  224. Ralhan A, Schöttle S, Thurow C, Iven T, Feussner I, Polle A, Gatz C (2012) The vascular pathogen Verticillium longisporum requires a jasmonic acid-independent COI1 function in roots to elicit disease symptoms in Arabidopsis shoots. Plant Physiol 159:1192–1203

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  225. Reeves PH, Ellis CM, Ploense SE, Wu M-F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8:e1002506

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  226. Reinbothe S, Mollenhauer B, Reinbothe C (1994a) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  227. Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994b) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci USA 91:7012–7016

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  228. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J 276:4666–4681

    CAS  PubMed  Article  Google Scholar 

  229. Richmond T, Bleecker A (1999) A defect in b-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–1923

    PubMed Central  CAS  PubMed  Google Scholar 

  230. Rickert K, Bostock R (1992) Evidence for release of the elicitor arachidonic acid and its metabolites from sporangia of Phytophthora infestans during infection of potato. Phys Mol Plant Path 41:61–72

    Article  Google Scholar 

  231. Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Article  Google Scholar 

  232. Robson F, Okamoto H, Patrick E, Harris S-R, Wasternack C, Brearley C, Turner JG (2010) Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143–1160

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  233. Rohwer C, Erwin J (2008) Horticultural applications of jasmonates: a review. J Hort Scie Biotech 83:283–304

    CAS  Google Scholar 

  234. Rustgi S, Pollmann S, Buhr F, Springer A, Reinbothe C, von Wettstein D, Reinbothe S (2014) JIP60-mediated, jasmonate- and senescence-induced molecular switch in translation toward stress and defense protein synthesis. Proc Natl Acad Sci USA 111:14181–14186

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  235. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochem Biophys Acta 1477:112–121

    CAS  PubMed  Google Scholar 

  236. Sakuaba Y, Park S-Y, Kim Y-S, Wang S-H, Yoo S-C, Hörtensteiner S, Paek N-C (2014) Arabidopsis STAY-GREEN2 Is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant 7:1288–1302

    Article  CAS  Google Scholar 

  237. Salvador-Recatala V, Tjallingii W, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684

    CAS  PubMed  Article  Google Scholar 

  238. Salvador-Recatalia V, Tjallingii W, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684

    Article  CAS  Google Scholar 

  239. Sanders P, Lee P, Biesgen C, Boone J, Beals T, Weiler E, Goldberg R (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  240. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  241. Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus CM, Bostock RM, Dehesh K (2010) Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–3205

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  242. Savchenko T, Zastrijnaja O, Klimov V (2014) Oxylipins and plant abiotic stress resistance. Biochem (Moscow) 79:362–375

    CAS  Article  Google Scholar 

  243. Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC (2013) E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. Front Plant Sci 4:74

    PubMed Central  PubMed  Article  Google Scholar 

  244. Scalschi L, Sanmartin M, Camanes G, Troncho P, Sanchez-Serrano J (2015) Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during activation of defense responses against Botrytis cinerea. Plant J 81:304–315

    CAS  PubMed  Article  Google Scholar 

  245. Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis - Structure, function, regulation. Phytochemistry 70:1532–1538

    CAS  PubMed  Article  Google Scholar 

  246. Schaller F, Weiler E (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thalina: STRUCTURAL AND FUNCTIONAL RELATIONSHIP TO YEAST OLD YELLOW ENZYME. J Biol Chem 272:28066–28072

    CAS  PubMed  Article  Google Scholar 

  247. Schaller F, Hennig P, Weiler E (1998) 12-oxophytodienoate-10,11-reductase: occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol 118:1345–1351

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  248. Schaller F, Zerbe P, Reinbothe S, Reinbothe C, Hofmann E, Pollmann S (2008) The allene oxide cyclase family of Arabidopsis thaliana - localization and cyclization. FEBS J 275:2428–2441

    CAS  PubMed  Article  Google Scholar 

  249. Schmidt J, Kramell R, Brückner C, Schneider G, Sembdner G, Schreiber K, Stach J, Jensen E (1990) Gas chromatographic/mass spectrometric and tandem mass spectrometric investigations of synthetic amino acid conjugates of jasmonic acid and endogenously occurring related compounds from Vicia faba L. Biomed Environm Mass Spectrom 19:327–338

    CAS  Article  Google Scholar 

  250. Schneider K, Kienow L, Schmelzer E, Colby T, Bartsch M, Miersch O, Wasternack C, Kombrink E, Stuible H-P (2005) A new type of peroxisomal acyl-coenzyme A synthetase from Arabidopsis thaliana has the catalytic capacity to activate biosynthetic precursors of jasmonic acid. J Biol Chem 280:13962–13972

    CAS  PubMed  Article  Google Scholar 

  251. Sembdner G, Atzorn R, Schneider G (1994) Plant hormone conjugation. Plant Mol Biol 26:1459–1481

    CAS  PubMed  Article  Google Scholar 

  252. Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 270:1988–1992

    CAS  PubMed  Article  Google Scholar 

  253. Seo H, Song J, Cheong J-J, Lee H-H, Hwang I, Lee J, Choi Y (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  254. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:252

    Article  Google Scholar 

  255. Shan X, Wang J, Chua L, Jiang D, Peng W, Xie D (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  256. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  257. Shen J, Tieman D, Jones A, Taylor M, Schmelz E, Huffaker A, Bies D, Chen K, Klee H (2014) A13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 65:419–428

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  258. Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  259. Siedow J (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Physiol. Plant Mol Biol 42:145–188

    CAS  Google Scholar 

  260. Song WC, Brash AR (1991) Purification of an allene oxide-synthase and identification of the enzyme as a cytochrome P-450. Science 253:781–784

    CAS  PubMed  Article  Google Scholar 

  261. Song W-C, Funk C, Brash AR (1993) Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90:8519–8523

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  262. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  263. Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013a) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  264. Song S, Qi T, Huang H, Xie D (2013b) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol Plant 6:1065–1073

    CAS  PubMed  Article  Google Scholar 

  265. Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, Xie D (2014a) Interaction between MYC2 and ETHYLENE INSENSITIVE3 Modulates Antagonism between Jasmonate and Ethylene Signaling in Arabidopsis. Plant Cell Rep 26:263–279

    CAS  Article  Google Scholar 

  266. Song S, Qi T, Wasternack C, Xie D (2014b) Jasmonate Signaling. Curr Opin Plant Biol 21:112–119

    CAS  PubMed  Article  Google Scholar 

  267. Staswick PE (1990) Novel Regulation of Vegetative Storage Protein Genes. Plant Cell 2:1–6

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  268. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  269. Staswick PE, Su W, Howell S (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89:6837–6840

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  270. Staswick PE, Tiryaki I, Rowe M (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14:1405–1415

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  271. Stelmach B, Müller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler E (2001) A novel class of oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    CAS  PubMed  Article  Google Scholar 

  272. Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan C, Wasternack C (2003a) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signaling. Plant J 33:577–589

    CAS  PubMed  Article  Google Scholar 

  273. Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003b) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911

    CAS  PubMed  Article  Google Scholar 

  274. Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C (2012) ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot 63:6125–6138

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  275. Sticher L, Mauch-Mani B, Metraux J (1997) Systemic aquired resistance. Annu Rev Phytopathol 35:235–270

    CAS  PubMed  Article  Google Scholar 

  276. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  277. Stratmann JW, Gusmaroli G (2012) Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Sci 185–186:50–64

    PubMed  Article  CAS  Google Scholar 

  278. Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R, Feussner I (2010) The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188:740–749

    CAS  PubMed  Article  Google Scholar 

  279. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S, Ozawa R, Uefune M, Sasaki R, Alamgir K, Akitake S, Nobuke T, Galis I, Aoki K, Shibata D, Takabayashi J (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc Natl Acad Sci USA 111:7144–7149

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  280. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  281. Sun L, Zhu L, Xu L, Yan D, Min L, Zhang X (2014) Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Comm 5:5372. doi:10.1038/ncomms6372

    CAS  Article  Google Scholar 

  282. Suza W, Rowe M, Hamberg M, Staswick PE (2010) A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves. Planta 231:717–728

    CAS  PubMed  Article  Google Scholar 

  283. Svyatyna K, Riemann M (2012) Light-dependent regulation of the jasmonate pathway. Protoplasma 249:137–145

    CAS  Article  Google Scholar 

  284. Tabata R, Ikezaki M, Fujibe T, Aida M, C-e Tian, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    CAS  PubMed  Article  Google Scholar 

  285. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, K-i Takamiya, Shibata D, Kobayashi Y, Ohta H (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  286. Tan X, Calderon-Villalobus L, Sharon M, Zheng C, Robinson C, Estelle M, Zheng N (2007) Mechnism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    CAS  PubMed  Article  Google Scholar 

  287. Tarkowska D, Novak O, Flokova K, Tarkowska P, Tureckova V, Gruz J, Rolcik J, Strnad M (2014) Quo vadis plant hormone analysis? Planta 240:55–76

    CAS  PubMed  Article  Google Scholar 

  288. Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    CAS  PubMed  Article  Google Scholar 

  289. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  290. Theorell H, Holman V, Akeson A (1947) Crystalline lipoxidase. Acta Chem Scand 1:571–576

    CAS  PubMed  Article  Google Scholar 

  291. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665

    CAS  PubMed  Article  Google Scholar 

  292. Thiocone A, Farmer E, Wolfender J (2008) Screening for wound-induced oxylipins in Arabidopsis thalina by differential HPLC-APC1/MS profiling of crude leaf extracts and subsequent characterization by capillary-scale NMR. Phytochem Anal 19:198–205

    CAS  PubMed  Article  Google Scholar 

  293. Tian D, Tooker J, Peiffer M, Chung S, Felton G (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236:1053–1066

    CAS  PubMed  Article  Google Scholar 

  294. Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68

    CAS  PubMed  Article  Google Scholar 

  295. Tran L-S, Pal S (2014) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer, Berlin

  296. Tsuchiya T, Ohta H, Okawa K, Owamatsu A, Shimada H, Masuda T, Takamiya K-I (1999) Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc Nat Acad Sci USA 96:15262–15367

    Article  Google Scholar 

  297. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  298. Ueda J, Miyamoto K, Aoki M, Hirata T, Sato T, Momotani Y (1991) Identification of jasmonic acid in Chlorella and Spirulina. Bull. Univ. Osaka Pref Ser 23:103–108

    Google Scholar 

  299. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  300. Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    PubMed  Article  CAS  Google Scholar 

  301. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    PubMed  Article  Google Scholar 

  302. Verhage A, Vlaardingerbroek I, Raaijmakers C, Van Dam N, Dicke M, Van Wees SCM, Pieterse CM (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47

    PubMed Central  PubMed  Article  Google Scholar 

  303. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Comm 111:470–477

    CAS  PubMed  Article  Google Scholar 

  304. Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  305. Vick BA, Zimmerman DC (1986) Characterization of 12-oxo-phytodienoic Acid reductase in corn: the jasmonic Acid Pathway. Plant Physiol 80:202–205

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  306. Vörös K, Feussner I, Kühn H, Lee J, Graner A, Löbler M, Parthier B, Wasternack C (1998) Characterization of a methyljasmonate-inducible lipoxygenase from barley (Hordeum vulgare cv. Salome) leaves. Eur J Biochem 251:36–44

    PubMed  Article  Google Scholar 

  307. Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  308. Wang C, Avdiushko S, Hildebrand D (1999) Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Mol Biol 40:783–793

    CAS  PubMed  Article  Google Scholar 

  309. Wang J-G, Chen C-H, Chien C-T, Hsieh H-L (2011) FAR-RED INSENSITIVE219 Modulates CONSTITUTIVE PHOTOMORPHOGENIC1 Activity via Physical Interaction to Regulate Hypocotyl Elongation in Arabidopsis. Plant Physiol 156:631–646

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  310. Wasternack C (2006) Oxylipins: biosynthesis, signal transduction and action. In: Hedden P, Thomas S (eds) Plant Hormone Signaling. Blackwell Publishing, Harpenden, pp 185–228

  311. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  312. Wasternack C (2014a) Action of jasmonates in plant stress responses and development - applied aspects. Biotechnol Adv 32:31–39

    CAS  PubMed  Article  Google Scholar 

  313. Wasternack C (2014b) Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie´s lab and the Chuanyou Li’s lab. Plant Cell Rep 33:707–718

    CAS  PubMed  Article  Google Scholar 

  314. Wasternack C, Hause B (2002) Jasmonates and octadecanoids - signals in plant stress response and development. In: Moldave K (ed) Progr Nucl Acid Res Mol Biol, vol 72. Acad Press, New York, pp 165–221

  315. Wasternack C, Hause B (2013a) Benno Parthier und die Jasmonatforschung in Halle. Nova Acta Leopold NF Suppl 28:29–38

    Google Scholar 

  316. Wasternack C, Hause B (2013b) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  317. Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    CAS  PubMed  Article  Google Scholar 

  318. Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  319. Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85

    CAS  PubMed  Article  Google Scholar 

  320. Weber H, Vick B, Farmer E (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  321. Weidhase R, Kramell H-M, Lehmann J, Liebisch H-W, Lerbs W, Parthier B (1987) Methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51:177–186

    CAS  Article  Google Scholar 

  322. Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F (1994) The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett 345:9–13

    CAS  PubMed  Article  Google Scholar 

  323. Widemann E, Miesch L, Lugan R, Holder E, Heinrich C, Aubert Y, Miesch M, Pinot F, Heitz T (2013) The amido-hydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxy-jasmonic acid upon wounding in Arabidopsis leaves. J Biol Chem 288:31701–31714

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  324. Wildon D, Thain J, Minchin P, Gubb I, Reilly A, Skipper Y, Doherty H, O´Donnell P, Bowles D (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    CAS  Article  Google Scholar 

  325. Woldemariam M, Ongokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767

    CAS  PubMed  Article  Google Scholar 

  326. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  327. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16:1132–1142

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  328. Xie D-X, Feys B, James S, Nieto-Rostro M, Turner J (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    CAS  PubMed  Article  Google Scholar 

  329. Xiong H, Shen H, Zhang L, Zhang Y, Guo X, Wang P, Duan P, Ji C, Zhong L, Zhang F, Zuo Y (2013) Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteom 78:447–460

    CAS  Article  Google Scholar 

  330. Xu L, Liu F, Lechner E, Genschik P, Crosby W, Ma H, Peng W, Huang D, Xie D (2002) The SCF-coi1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  331. Xu P, Choo Y-M, Rosa A, Leal W (2014) Mosquito odorant receptor for DEET and methyl jasmonate. Proc Natl Acad Sci USA 111:16592–16597

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  332. Yamane H, Sugawara J, Suzuki Y, Shimamura E, Takahashi N (1980) Syntheses of jasmonic acid related compounds and their structure-activity relationship on the growth of rice seedlings. Agric Biol Chem 44:2857–2864

    CAS  Article  Google Scholar 

  333. Yamane H, Takahashi N, Ueda J, Kato J (1981) Resolution of (+/−)-methyl jasmonate by high performance liquid chromatography and the inhibitory effect of (+)-enantiomer on the growth of rice seedlings. Agric Biol Chem 45:1709–1711

    CAS  Article  Google Scholar 

  334. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  335. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  336. Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D (2013a) The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–498

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  337. Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C, Li C (2013b) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity. PLoS Genet 9:e1003964

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  338. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, Xiao L-T, T-p Sun, Li J, Deng X-W, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Nat Acad Sci USA 109:E1192–E1200

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  339. Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    CAS  PubMed  Article  Google Scholar 

  340. Yu H, Shiva S, Roth M, Tamura P, Zheng L, Li M, Sarowar S, Honey S, McEllhiney D, Hinkes P, Seib L, Williams T, Gadbury G, Wang X, Shah J, Welti R (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743

    Article  CAS  Google Scholar 

  341. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  342. Zhang H, Zhou C (2013) Signal transduction in leaf senescence. Plant Mol Biol 82:539–545

    CAS  PubMed  Article  Google Scholar 

  343. Zhou C, Zhang L, Duan J, Miki B, Wu K (2005) HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell 17:1196–1204

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  344. Zhu X, Zhu J-K (2013) Double repression in jasmonate-mediated plant defense. Mol Cell 50:459–460

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  345. Ziegler J, Hamberg M, Miersch O, Parthier B (1997) Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114:565–573

    PubMed Central  CAS  PubMed  Google Scholar 

  346. Ziegler J, Wasternack C, Hamberg M (1999) On the specificity of allene oxide cyclase. Lipids 34:1005–1015

    CAS  PubMed  Article  Google Scholar 

  347. Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138

    CAS  PubMed  Article  Google Scholar 

  348. Zimmerman DC, Feng P (1978) Characterization of a prostaglandin-like metabolite of linolenic acie produced by a flax seed extract. Lipids 13:313–316

    CAS  Article  Google Scholar 

Download references

Acknowledgments

These historical remarks on jasmonate research were strongly facilitated by the research on jasmonates in the former Institute of Biochemistry of Plants (now Leibniz Institute of Plant Biochemistry, IPB) in Halle (Saale) (Germany). I thank the IPB and funding agencies in Germany such as Deutsche Forschungsgemeinschaft (DFG) for continuous support of jasmonate research at the IPB for more than 20 years. Furthermore, I thank B. Parthier, the inaugurator of molecular JA research in Halle (Saale), and my long-term collaborators B. Hause (IPB, Halle) and I. Feussner (Göttingen, Germany) for seminal collaboration. I thank all former members of the JA group at the IPB for stimulating contributions. I thank M. Strnad (Palacky University of Olomouc, Czech Republic) for the possibility to write this review in the framework of my visiting professorship at this University. I thank for financial support by the Palacky University Olomouc, Czech Republic, in the program Interhana: Operational Program Education for Competitiveness—European Social Fund (project CZ.1.07/2.3.00/20.0165) and by the Czech Ministry of Education grant from the National program for Sustainability (L07204). Thanks to all who provided a portrait. I am also grateful to B. Hause (IPB), O. Miersch (Halle, Saale), J. Ueda (Osaka, Japan), P. Staswick (Nebraska, USA), and G. A. Howe (East Lansing, USA) for critical reading of the manuscript and Sees-editing Ltd. (UK) for improving the English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Claus Wasternack.

Additional information

Claus Wasternack apologize for omissions of important studies that have not been cited due to space limitations and any potential misinterpretations. The text is the outcome of a review of published data and my discussions with numerous colleagues in meetings during the last 25 years. However, these historical remarks are personal views and I am exclusively responsible for any errors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wasternack, C. How Jasmonates Earned their Laurels: Past and Present. J Plant Growth Regul 34, 761–794 (2015). https://doi.org/10.1007/s00344-015-9526-5

Download citation

Keywords

  • Historical aspects
  • Jasmonic acid
  • Perception
  • Signaling
  • Crosstalk
  • Stress responses
  • Development
  • Applied aspects