Skip to main content

History of Research on the Plant Hormone Ethylene

Abstract

Ethylene is the simplest of the olefin gasses and was the first known gaseous biological signaling molecule. It is synthesized by plants during certain stages of development and in response to abiotic and biotic stresses. Ethylene affects many aspects of plant growth, development as well as responses to environmental cues. Research leading to the discovery of ethylene as a plant hormone started in the 1800s with scientists examining the effects of illuminating gas on plants. In 1901, Dimitry Neljubow determined that ethylene is the active component of illuminating gas that affects plants and thus launched this important field of research. It is generally accepted that in 1934 Richard Gane provided the conclusive evidence that plants biosynthesize ethylene. This early research showed that ethylene is both biosynthesized and sensed by plants. From the 1930s to the 1960s, there was scant research on ethylene as a hormone because many researchers did not believe that ethylene was indeed a plant hormone and because that the detection of ethylene was difficult. However, in the late 1950s, the application of gas chromatography led to an increased interest in ethylene research. From the 1960s through the early 1980s, the biochemical pathway for ethylene biosynthesis in plants was elucidated and membrane-bound ethylene-binding sites were discovered and characterized. The use of Arabidopsis thaliana as a model plant system and the widespread use of molecular biological techniques starting in the 1980s correlates with a second and larger increase in ethylene research productivity. Information gleaned from this model plant is now being applied to many plant species. In recent years, detailed models for the regulation of ethylene biosynthesis and ethylene signal transduction have emerged. This article provides an overview of the key historical discoveries regarding ethylene as a plant hormone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abeles F, Morgan P, Saltveit MJ (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego 414 p

    Google Scholar 

  2. Abeles FB, Forrence LE, Leather GR (1971) Ethylene air pollution. Plant Physiol 48:504–505

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  3. Abeles FB, Heggestad HE (1973) Ethylene: An urban air pollutant. J Air Pollut Control Assoc 23:517–521

    CAS  PubMed  Article  Google Scholar 

  4. Abeles FB, Holm RE (1967) Abscission: the role of protein synthesis. Ann NY Acad Sci 144:367–373

    CAS  Article  Google Scholar 

  5. Abeles FB, Rubinstein B (1964) Cell-free ethylene evolution from etiolated pea seedlings. Defense Documentation Center.

  6. Adams DO, Yang SF (1977) Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol 60(6):892–896

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  7. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:326–330

    Article  Google Scholar 

  8. Aharoni N, Lieberman N, Sisler HD (1979) Patterns of ethylene production in senescing leaves. Plant Physiol 61:332–358

    Google Scholar 

  9. Alexander FW, Sandmeier E, Mehta PK, Christen P (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. Eur J Biochem 219(3):953–960

    CAS  PubMed  Article  Google Scholar 

  10. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423):2148–2152

    CAS  PubMed  Article  Google Scholar 

  11. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22(7):2384–2401

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  12. Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105

    CAS  Article  Google Scholar 

  13. Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103(20):7923–7928

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  14. Baur AH, Yang SF (1972) Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochem 49:3207–3214

    Article  Google Scholar 

  15. Baur AH, Yang SF, Pratt HK (1971) Ethylene biosynthesis in fruit tissues. Plant Physiol 47(5):696–699

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  16. Beyer J (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–371

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  17. Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB (2004a) Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol 136(2):2921–2927

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Binder BM, O’Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB (2004b) Arabidopsis seedling growth response and recovery to ethylene. a kinetic analysis. Plant Physiol 136(2):2913–2920

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  19. Binder BM, O’Malley RC, Wang W, Zutz TC, Bleecker AB (2006) Ethylene stimulates nutations that are dependent on the ETR1 receptor. Plant Physiol 142(4):1690–1700

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemman G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3-Binding F-Box proteins, EBF1 and 2 have distinct but overlapping roles in regulating ethylene signaling. Plant Cell 19:509–523

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  21. Binder BM, Rodríguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 285(48):37263–37270

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  22. Bisson MMA, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3(5):882–889

    CAS  PubMed  Article  Google Scholar 

  23. Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424(1):1–6

    CAS  PubMed  Article  Google Scholar 

  24. Bleecker AB, Kenyon WH, Somerville SC, Kende H (1986) Use of monoclonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA 83(20):7755–7759

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  25. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  PubMed  Article  Google Scholar 

  26. Boller T (1984) Superinduction of ACC synthase in tomato pericarp by lithium ions. In: Fuchs Y, Chalutz E (eds) Ethylene: Biochemical, physiological and applied aspects. Marinus Nijhoff/Dr W. junk Publishers, New York, pp 87–88

    Chapter  Google Scholar 

  27. Boller T, Herner RC, Kende H (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293–303

    CAS  PubMed  Article  Google Scholar 

  28. Boller T, Gehri A, Mauch F, Vogeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31

    CAS  PubMed  Article  Google Scholar 

  29. Burg SP (1973) Ethylene in plant growth. Proc Natl Acad Sci USA 70:591–597

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  30. Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42:144–152

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  31. Burg SP, Clagett CO (1967) Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun 27(2):125–130

    CAS  PubMed  Article  Google Scholar 

  32. Burg SP, Stolwijk JAJ (1959) A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J Biochem Micro Technol Eng 1:245–259

    CAS  Article  Google Scholar 

  33. Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129(4):1557–1567

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN (1999) Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294(3):745–756

    CAS  PubMed  Article  Google Scholar 

  35. Chace EM (1934) Health problems connected with the ethylene treatment of fruits. Am J Pub Health 24:1152–1156

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10(6):291–296

    CAS  PubMed  Article  Google Scholar 

  37. Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15(2):545–559

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  38. Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85(18):6856–6860

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  39. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133):539–544

    CAS  PubMed  Article  Google Scholar 

  40. Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144

    CAS  PubMed  Article  Google Scholar 

  41. Chen Y-F, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277(22):19861–19866

    CAS  PubMed  Article  Google Scholar 

  42. Chen T, Liu J, Lei G, Liu Y-F, Li Z-G, Tao J-J, Hao Y-J, Cao Y-R, Lin Q, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50(9):1636–1650

    CAS  PubMed  Article  Google Scholar 

  43. Chen Y-F, Gao Z, Kerris RJ 3rd, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS One 5(1):e8640. doi:10.1371/journal.pone.0008640

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  44. Chen R, Binder BM, Garrett WM, Tucker ML, Cooper B, Chang C (2011) Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7:2637–2650

    CAS  PubMed  Article  Google Scholar 

  45. Chou TC, Talalay P (1972) The mechanism of S-adenosyl-l-methionine synthesis by purified preparations of bakers’ yeast. Biochemistry 11(6):1065–1073

    CAS  PubMed  Article  Google Scholar 

  46. Christians M, Ginerich D, Hansen M, Binder B, Kieber J, Vierstra R (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  47. Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95(9):5401–5406

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  48. Cousins HH (1910) Agricultural experiments: citrus. Jam Dept Ag Ann Rep 7:15

    Google Scholar 

  49. Crocker W (1913) The effects of advancing civilization upon plants. School Sci Math 13(4):277–289

    Article  Google Scholar 

  50. Crocker W, Knight LI (1908) Effect of illuminating gas and ethylene upon flowering carnations. Bot Gaz 46:259–276

    Article  Google Scholar 

  51. Crocker W, Knight LI, Rose RC (1913) A delicate seedling test. Science 37:380–381

    Google Scholar 

  52. Crocker W, Zimmerman PW, Hitchcock AE (1932) Ethylene-induced epinasty of leaves and the relation of gravity to it. Cont Boyce Thompson Inst 4:177–218

    CAS  Google Scholar 

  53. Crocker W, Hitchcock AE, Zimmerman PW (1935) Similarities in the effects of ethylene and the plant auxins. Cont Boyce Thompson Inst 7:231–238

    CAS  Google Scholar 

  54. Davies KM, Grierson D (1989) Identification of cDNA clones for tomato (Lycopersicon esculentum Mill) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta 179(1):73–80

    CAS  PubMed  Article  Google Scholar 

  55. De Paepe A, Van Der Straeten D (2005) Ethylene biosynthesis and signaling: an overview. Vitam Horm 72:399–430

    PubMed  Article  CAS  Google Scholar 

  56. Denny FE (1923) Method of coloring citrus fruits. US Patent #1,475,938.

  57. Denny FE (1924) Hastening the coloration of lemons. J Agri Res 27:757–769

    CAS  Google Scholar 

  58. Deuber CG (1932) Stimulative effects of illuminating gas on trees. Science 75(1949):496–497

    CAS  PubMed  Article  Google Scholar 

  59. Dong JG, Kim WT, Yip WK, Thompson GA, Li LM, Bennett AB, Yang SF (1991a) Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185(1):38–45

    CAS  PubMed  Article  Google Scholar 

  60. Dong JG, Yip WK, Yang SF (1991b) Monoclonal antibodies against apple 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol 32(1):25–31

    CAS  Google Scholar 

  61. Dong JG, Fernandezmaculet JC, Yang SF (1992) Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89(20):9789–9793

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  62. Dong C-H, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  63. Dong C-H, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C (2010) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 285(52):40706–40713

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  64. Doubt SL (1917) The response of plants to illuminating gas. Bot Gaz 63(3):209–224

    CAS  Article  Google Scholar 

  65. Eulenberg H (1876) Handbuch der gewerbehygiene auf experimenteller grundlage. August Hirschwald, Berlin 928 p

    Google Scholar 

  66. Evans DE, Bengochea T, Cairns AJ, Dodds JH, Hall MA (1982a) Studies on ethylene binding by cell-free preparations from cotyledons of Phaseolus vulgaris L.: subcellular localization. Plant Cell Environ 5:101–107

    CAS  Google Scholar 

  67. Evans DE, Dodds JH, Lloyd PC, apGwynn I, Hall MA (1982b) A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris L. by high resolution autoradiography. Planta 154:48–52

    CAS  PubMed  Article  Google Scholar 

  68. Eyal Y, Meller Y, Levy S, Fluhr R (1993) A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4:225–234

    CAS  PubMed  Article  Google Scholar 

  69. Fahnestock GW (1858) Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants. Proc Acad Nat Sci Phil 9–10:118–134

    Google Scholar 

  70. Frey SC (1918) Pericat v. Philadelphia Suburban Gas Co. In: The York Legal Record, Wiest, A.C. edn., vol 32 York Legal Record Printers, York, pp 125–127

  71. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101(17):6803–6808

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  72. Galil J (1968) An ancient technique for ripening sycomore fruit in East-Mediterranean countries. Econ Bot 22:178–190

    Article  Google Scholar 

  73. Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95(13):7825–7829

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  74. Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128(4):1428–1438

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  75. Gane R (1934) Production of ethylene by some fruits. Nature 134:1008

    CAS  Article  Google Scholar 

  76. Gane R (1935) The formation of ethylene by plant tissue and its significance in the ripening of fruit. J Pomol Hort Sci 13:351–358

    CAS  Google Scholar 

  77. Gao ZY, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278(36):34725–34732

    CAS  PubMed  Article  Google Scholar 

  78. Gao Z, Wen C-K, Binder BM, Chen Y-F, Chang J, Chiang Y-H, Kerris RJ III, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283(35):23801–23810

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  79. Giardin JPL (1864) Einfluss des leuchtgases auf die promenaden und strassenbaüme. Jahresb Agrikultur 7:199–200

    Google Scholar 

  80. Giovanelli J, Mudd SH, Datko AH (1985) Quantitative-analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78(3):555–560

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. Goeschl JD, Kays SJ (1975) Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean, and cotton seedlings. Plant Physiol 55:670–677

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  82. Gordon RJ, Mayrsohn H, Ingels RM (1968) C2-C5 hydrocarbons in the Los Angeles atmosphere. Envir Sci Technol 2:1117–1120

    CAS  Article  Google Scholar 

  83. Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 283:e311

    Article  CAS  Google Scholar 

  84. Grefen C, Städele K, Růžička K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and In vivo interaction of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    CAS  PubMed  Article  Google Scholar 

  85. Guo HW, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677

    CAS  PubMed  Article  Google Scholar 

  86. Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    PubMed Central  PubMed  Article  Google Scholar 

  87. Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15(9):2032–2041

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  88. Hall AE, Chen QHG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121(1):291–299

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  89. Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123(4):1449–1457

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  90. Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159(2):682–695

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346(6281):284–287

    CAS  Article  Google Scholar 

  92. Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88(16):7434–7437

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  93. Han L, Li G-J, Yang K-Y, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64(1):114–127

    CAS  PubMed  Google Scholar 

  94. Hart CM, Nagy F, Meins FJ (1993) A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol Biol 21:121–131

    CAS  PubMed  Article  Google Scholar 

  95. Harvey EM (1915) Some effects of ethylene on the metabolism of plants. Bot Gaz 60:193–214

    CAS  Article  Google Scholar 

  96. Harvey EM, Rose EC (1915) The effects of illuminating gas on root systems. Bot Gaz 60:27–44

    CAS  Article  Google Scholar 

  97. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97(3):383–393

    CAS  PubMed  Article  Google Scholar 

  98. Holm RE, Abeles FB (1967) Abcission: the role of RNA synthesis. Plant Physiol 42:1094–1102

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. Horikawa S, Tsukada K (1992) Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett 312(1):37–41

    CAS  PubMed  Article  Google Scholar 

  100. Horikawa S, Ishikawa M, Ozasa H, Tsukada K (1989) Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase. Eur J Biochem 184(3):497–501

    CAS  PubMed  Article  Google Scholar 

  101. Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K (1990) Molecular cloning and nucleotide sequence of cDNA-encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem 265(23):13683–13686

    CAS  PubMed  Google Scholar 

  102. Horton RF, Osborne DJ (1967) Senescence, abscission and cellulase activity in Phaseolus vulgaris. Nature 217:1086–1088

    Article  Google Scholar 

  103. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    CAS  PubMed  Article  Google Scholar 

  104. Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269(5231):1712–1714

    CAS  PubMed  Article  Google Scholar 

  105. Hua J, Sakai H, Nourizadeh S, Chen QHG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10(8):1321–1332

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  106. Huang YF, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233

    CAS  PubMed  Article  Google Scholar 

  107. Huelin GE, Kennett BH (1959) Nature of olefines produced by apples. Nature 184:996

    CAS  Article  Google Scholar 

  108. Hun MT (1897) Armbruster v. Auburn Gas Light Co. In: Reports of Cases Heard and Determined in the Appellate Division of the Supreme Court of the State of New York, vol 18. Banks & Brothers, Albany, pp 447–451

  109. Jackson MB (1983) Regulation of root growth and morphology by ethylene and other externally applied growth substances. In: Jackson M, Stead A (eds) Growth Regulators in Root Development. Monograph No. 10. British Plant Growth Regulator Group, London, pp 103-116

  110. Jackson MB, Morrow IB, Osborne DJ (1972) Abscisssion and dehiscence in the squirting cucumber, Ecballium elaterium. Regulation by ethylene. Can J Bot 50:1464–1471

    Google Scholar 

  111. John P (1983) The coupling of ethylene biosynthesis to a transmembrane, electrogenic proton flux. FEBS Lett 152(2):141–143

    CAS  Article  Google Scholar 

  112. John P, Porter AJR, Miller AJ (1985) Activity of the ethylene-forming enzyme measured In vivo at different cell potentials. J Plant Physiol 121(5):397–406

    CAS  Article  Google Scholar 

  113. Joo S, Liu Y, Lueth A, Zhang S (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54(1):129–140

    CAS  PubMed  Article  Google Scholar 

  114. Ju C, Yoon GM, Shemansky JM, Lin D, Yin I, Chang J, Garrett W, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109(47):19486–19491

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  115. Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H (2010) Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J 64(1):140–150

    CAS  PubMed  Google Scholar 

  116. Kende H (1998) Plant biology and the Nobel prize. Science 282(5389):627

    CAS  PubMed  Article  Google Scholar 

  117. Kidd F, West C (1933) The effects of ethylene and apple vapours on the ripening of fruits. Gt Brit Dept Sci Ind Res 1932:55–58

    Google Scholar 

  118. Kieber JJ, Rothenberg M, Roman G, Feldman KA, Ecker JR (1993) CTR1, A negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    CAS  PubMed  Article  Google Scholar 

  119. Kim H, Helmbrecht EE, Stalans MB, Schmitt C, Patel N, Wen C-K, Wang W, Binder BM (2011) Ethylene receptor ETR1 domain requirements for ethylene responses in Arabidopsis seedlings. Plant Physiol 156:417–429

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  120. Kim J, Wilson RL, Case JB, Binder B (2012) A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. Plant Physiol 160(3):1567–1580

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  121. Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135(2):660–667

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  122. Knight LI, Crocker W (1913) Toxicity of smoke. Bot Gaz 55:337–371

    CAS  Article  Google Scholar 

  123. Knight LI, Rose RC, Crocker W (1910a) Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31:635–636

    Google Scholar 

  124. Knight LI, Rose RC, Crocker W (1910b) A new method of detecting traces of illuminating gas. Science 31:636

    CAS  Google Scholar 

  125. Kny L (1871) Um den einfluss des leuchtgases auf die baumvegetation zu prüfen. Bot Zeit 29:852–854

    Google Scholar 

  126. Konings H, Jackson MB (1979) A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Zeitschr Pflanzenphysiol 92:385–397

    CAS  Article  Google Scholar 

  127. Koorneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921

    Article  CAS  Google Scholar 

  128. Koshland DE (1993) The two-component pathway comes to eukaryotes. Science 262:532

    PubMed  Article  Google Scholar 

  129. Ku HS, Suge H, Rappaport L, Pratt HK (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90(4):333–339

    CAS  PubMed  Article  Google Scholar 

  130. Lackner C (1873) Gärnerische plaudereine. Monatsschrift des vereines zür beförderund des gartenbaues in den königl. Preuss Staaten 16:16–22

    Google Scholar 

  131. Larsen PB, Woodson WR (1991) Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation. Plant Physiol 96(3):997–999

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  132. Lieberman M, Kunishi AT (1965) Ethylene production from methionine. Biochem J 97(2):449–459

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  133. Lieberman M, Mapson LW (1964) Genesis and biogenesis of ethylene. Nature 204:343–345

    CAS  Article  Google Scholar 

  134. Lieberman M, Kunishi A, Mapson LW, Wardale DA (1966) Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol 41(3):376–382

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  135. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16(12):3386–3399

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  136. Lürssen K, Naumann K, Schröder R (1979a) 1-aminocyclopropane-1-carboxylic acid — A new intermediate of ethylene biosynthesis. Naturwissenschaf 66:264–265

    Article  Google Scholar 

  137. Lürssen K, Naumann K, Schröder R (1979b) 1-aminocyclopropane-l-carboxylic acid - An intermediate of the ethylene biosynthesis in higher plants. Zeitschr Pflanzenphysiol 92(4):285–294

    Article  Google Scholar 

  138. Lyzenga WJ, Booth JK, Stone SL (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71(1):23–34

    CAS  PubMed  Article  Google Scholar 

  139. Ma Q-H, Wang X-M (2003) Characterization of an ethylene receptor homologue from wheat and its expression during leaf senescence. J Exp Bot 54(386):1489–1490

    CAS  PubMed  Article  Google Scholar 

  140. Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC Press Inc, Boca Raton 337 p

    Google Scholar 

  141. Mayak S, Halevy AH (1972) Interrelationships of ethylene and abscissic acid in the control of rose petal senescence. Plant Physiol 50:341–346

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  142. McAfee JA, Morgan PW (1971) Rates of production and internal levels of ethylene in vegetative cotton plant. Plant Cell Physiol 12:839–847

    CAS  Google Scholar 

  143. McSteen P, Zhao YK (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473

    CAS  PubMed  Article  Google Scholar 

  144. Meigh DR (1959) Nature of olefines produed by apples. Nature 184:1072–1073

    CAS  Article  Google Scholar 

  145. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Op Plant Biol 16(5):554–560

    CAS  Article  Google Scholar 

  146. Métraux J-P, Kende H (1983) The role of ethylene in the growth response of submerged deep water rice. Plant Physiol 72(2):441–446

    PubMed Central  PubMed  Article  Google Scholar 

  147. Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229:1214–1218

    CAS  PubMed  Article  Google Scholar 

  148. Michener HD (1938) The action of ethylene on plant growth. Am J Bot 25:711–720

    CAS  Article  Google Scholar 

  149. Miller EV (1947) The story of ethylene. Sci Monthly 65(4):335–342

    CAS  Google Scholar 

  150. Mita S, Kawamura S, Yamawaki K, Nakamura K, Hyodo H (1998) Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol 39(11):1209–1217

    CAS  PubMed  Article  Google Scholar 

  151. Miyazaki JM, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69(2):366–370

    CAS  Article  Google Scholar 

  152. Molisch H (1884) Ueber die ablenkung der wurzeln von ihrer normalen wachstumsrichtung durch gaze (Aërotropismus). Sizungsber Kaiserl Akad Wiss Wien 90:111–196

    Google Scholar 

  153. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279(47):48734–48741

    CAS  PubMed  Article  Google Scholar 

  154. Musgrave A, Walters J (1974a) Ethylene-stimulated growth and auxin transport in Ranunculus sceleratus petioles. New Phytol 72:783–789

    Article  Google Scholar 

  155. Musgrave A, Walters J (1974b) Ethylene and buoyancy control rachis elongation of the semi-aquatic fern Regnellidium diphyllum. Planta 121:51–56

    CAS  PubMed  Article  Google Scholar 

  156. Musgrave A, Jackson MB, Ling E (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nat New Biol 238:93–96

    Article  Google Scholar 

  157. Nakagawa N, Nakajima N, Imaseki H (1988) Immunochemical difference of wound-induced 1-aminocyclopropane-1-carboxylate synthase from the auxin-induced enzyme. Plant Cell Physiol 29(7):1255–1259

    CAS  Google Scholar 

  158. Nakagawa N, Mori H, Yamazaki K, Imaseki H (1991) Cloning of a complementary DNA for auxin-induced 1-aminocyclopropane-1-carboxylate synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol 32(8):1153–1163

    CAS  Google Scholar 

  159. Nakajima N, Imaseki H (1986) Purification and properties of 1-aminocyclopropane-1-carboxylate synthase of mesocarp of Cucurbita maxima Duch. fruits. Plant Cell Physiol 27(6):969–980

    CAS  Google Scholar 

  160. Nakajima N, Mori H, Yamazaki K, Imaseki H (1990) Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31(7):1021–1029

    CAS  Google Scholar 

  161. Neljubow D (1901) Uber die horizontale nutation der stengel von Pisum sativum und einiger anderen pflanzen. Beih Bot Zentralb 10:128–139

    Google Scholar 

  162. Nord FF (1936) Effects of ethylene on the plant growth hormone. Science 83(2151):284

    CAS  PubMed  Article  Google Scholar 

  163. Novikova GV, Moshkov IE, Smith AR, Hall MA (2000) The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett 474:29–32

    CAS  PubMed  Article  Google Scholar 

  164. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  165. Olmedo G, Guo HW, Gregory BD, Hourizadeh SD, Aguilar-Henonin L, Li H, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′ → 3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  166. Olson DC, White JA, Edelman L, Harkins RN, Kende H (1991) Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88(12):5340–5344

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  167. O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41(5):651–659

    PubMed  Article  CAS  Google Scholar 

  168. Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22(6):1282–1288

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  169. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Vanmontagu M, Inze D (1989a) Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1(1):81–93

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  170. Peleman J, Saito K, Cottyn B, Engler G, Seurinck J, Vanmontagu M, Inze D (1989b) Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84(2):359–369

    CAS  PubMed  Article  Google Scholar 

  171. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: eBF1 and EBF2. Cell 115(6):679–689

    CAS  PubMed  Article  Google Scholar 

  172. Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra R, Genschik P (2006) The exonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  173. Prasad ME, Stone SL (2010) Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved ethylene biosynthesis. Plant Signal Behav 5:1425–1429

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  174. Prasad ME, Schofield A, Lyzenga W, Stone SL (2010) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153:1587–1596

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  175. Priestley JH (1922) The toxic action of traces of coal gas upon plants. Ann Appl Biol 9:146–155

    Article  Google Scholar 

  176. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  177. Qiao H, Shen Z, S-sC Huang, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  178. Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136(2):2961–2970

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  179. Qu X, Hall B, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7(1):3

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  180. Ramalingam K, Lee KM, Woodard RW, Bleecker AB, Kende H (1985) Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 82(23):7820–7824

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  181. Rauser WE, Horton RF (1975) Rapid effects of indoleacetic acid and ethylene on the growth of intact pea roots. Plant Physiol 55:443–447

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  182. Resnick JS, Wen C-K, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103(20):7917–7922

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  183. Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56(3):423–431

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  184. Richards HM, MacDougal DT (1904) The influence of carbon monoxide and other gases upon plants. Bull Torrey Bot Club 31(12):57–66

    Article  Google Scholar 

  185. Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382

    Article  Google Scholar 

  186. Rivarola M, McClellan CA, Resnick JS, Chang C (2009) ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by benetic interaction with RTE1. Plant Physiol 150(2):547–551

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  187. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283(5404):996–998

    CAS  PubMed  Article  Google Scholar 

  188. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana - five novel mutant loci integrated into a stress response pathway. Genetics 139(3):1393–1409

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Rose-John S, Kende H (1985) Short-term growth response of deep-water rice to submergence and ethylene. Plant Sci 38(2):129–134

    CAS  Article  Google Scholar 

  190. Sakai H, Hua J, Chen QHG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95(10):5812–5817

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  191. Sanders IO, Harpham NVJ, Raskin I, Smith AR, Hall MA (1991) Ethylene binding in wild type and mutant Arabidopsis thaliana (L.) Heynh. Ann Bot 68:97–103

    CAS  Google Scholar 

  192. Satler SO, Kende H (1985) Ethylene and the growth of rice seedlings. Plant Physiol 79(1):194–198

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  193. Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86(17):6621–6625

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  194. Sato T, Oeller PW, Theologis A (1991) The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. J Biol Chem 266(6):3752–3759

    CAS  PubMed  Google Scholar 

  195. Sato-Nara K, Yuhashi K-I, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in Muskmelon. Plant Physiol 120(1):321–330

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  196. Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270(5243):1809–1811

    CAS  PubMed  Article  Google Scholar 

  197. Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270(21):12526–12530

    CAS  PubMed  Article  Google Scholar 

  198. Scott WE, Stephens ER, Hanst PC, Doerr RC (1957) Further developments in the chemistry of the atmosphere. Proc Am Petrol Inst 37:171–183

    CAS  Google Scholar 

  199. Sebastià CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428(1):81–91

    Article  CAS  Google Scholar 

  200. Sedgwick WT, Schneider F (1911) The relation of illuminating gas to public health. J Am Pub Health Assoc 1(5):385–390

    CAS  Article  Google Scholar 

  201. Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants. doi:10.1093/aobpla/plt1010

    PubMed Central  PubMed  Google Scholar 

  202. Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53(368):399–406

    CAS  PubMed  Article  Google Scholar 

  203. Sievers AF, True RH (1912) A preliminary study of the forced curing of lemons as practiced in California. USDA Bulletin no. 232:1–38

  204. Sisler EC (1979) Measurement of ethylene binding in plant tissue. Plant Physiol 64:538–542

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  205. Sisler EC (1980) Partial purification of an ethylene-binding component from plant tissue. Plant Physiol 66:404–406

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  206. Sisler EC (1982) Ethylene-binding properties of a triton X-100 extract of mung bean sprouts. J Plant Growth Regul 1:211–218

    CAS  Google Scholar 

  207. Sisler EC (1991) Ethylene-binding components in plants. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press Inc, Baca Raton, pp 81–99

    Google Scholar 

  208. Sisler EC, Pian A (1973) Effect of ethylene and cyclic olefins on tobacco leaves. Tobacco Sci 17:68–72

    CAS  Google Scholar 

  209. Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7(4):e1001370

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  210. Smith AR, Robertson D, Sanders IO, Williams RAN, Hall MA (1987) Ethylene binding sites. In: Klambt D (ed) Plant hormone receptors. Springer-Verlag, Berlin, pp 229–238

    Chapter  Google Scholar 

  211. Söding H (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber dtsch bot Ges 71:396–400

    Google Scholar 

  212. Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  213. Somerville C, Koorneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3(11):883–889

    CAS  PubMed  Article  Google Scholar 

  214. Sorauer P (1916) Untersuchungen über leuchtgasbeschädigungen. Zeitschr Pflanzenkrankh 26:129–183

    Google Scholar 

  215. Späth Meyer (1873) Beobachtungen über den einfluss des leuchtgases auf die vegetation von bäumen. Landwirtsch Versuchs-Stat 16:336–341

    Google Scholar 

  216. Starling EH (1905) The Croonian Lectures. I. On the chemical correlation of the functions of the body. Lancet 166:399–441

    Google Scholar 

  217. Stiness EC (1909) Richard H. Dunbar vs. Bristol County Gas and Electric Complany. Reports of Cases Argued and Determined in the Supreme Court of Rhode Island, vol 29. E.L. Freeman Company, Providence, pp 211–213

    Google Scholar 

  218. Stone GE (1907) Effect of escaping illuminating gas on trees. Nineteenth Annual Report of the Massachusetts Agricultural Experimental Station. Wright & Potter Printing Company, Boston, pp 180–185

    Google Scholar 

  219. Tabor CW, Tabor H (1984) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 56., pp 251–282

    Google Scholar 

  220. Takahashi H, Kobayashi T, Sato-Nara K, Tomita K-o, Ezura H (2002) Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J Exp Bot 53(368):415–422

    CAS  PubMed  Article  Google Scholar 

  221. Tan S-T, Xue H-W (2014) Caseine kinase 1 regulates ethylene synthesis by phosphorylating and promoting turnover of ACS5. Cell Rep 9(5):1692–1702

    CAS  PubMed  Article  Google Scholar 

  222. Tarun AS, Theologis A (1998) Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem 273(20):12509–12514

    CAS  PubMed  Article  Google Scholar 

  223. Tarun AS, Lee JS, Theologis A (1998) Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA 95(17):9796–9801

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  224. Terajima Y, Nukui H, Kobayashi A, Fujimoto S, Hase S, Yoshioka T, Hashiba T, Satoh S (2001) Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1, of tobacco (Nicotiana tabacum L.). Plant Cell Physiol 42(3):308–313

    CAS  PubMed  Article  Google Scholar 

  225. Thomas CJR, Smith AR, Hall MA (1984) The effect of solubilisation on the character of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:474–479

    Article  Google Scholar 

  226. Thomas CJR, Smith AR, Hall MA (1985) Partial purification of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:272–277

    CAS  PubMed  Article  Google Scholar 

  227. Thompson IG (1878) Butcher v. Providence Gas company. The Albany Law Journal, vol 18. Weed, Pasons, and Company, Albany, pp 272–273

    Google Scholar 

  228. van der Laan PA (1934) Der einfluss von aethylenen auf die wuchsstoffbildung bei Avena und Vicia. Rec Trav Bot Neerl 31:691–742

    Google Scholar 

  229. Van der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M (1989) Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp. Eur J Biochem 182(3):639–647

    PubMed  Article  Google Scholar 

  230. Van der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M (1990) Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87(12):4859–4863

    PubMed Central  PubMed  Article  Google Scholar 

  231. Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137(4):597–606

    CAS  PubMed  Article  Google Scholar 

  232. Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30(3):725–727

    CAS  Article  Google Scholar 

  233. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95(8):4766–4771

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  234. Vriezen WH, Ran Rijn CPE, Voesenek LACJ, Mariani C (1997) A homologue of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265–1271

    CAS  PubMed  Article  Google Scholar 

  235. Wallace RH (1926) The production of intumescence upon apple twigs by ethylene gas. Bull Torrey Bot Club 53:358–402

    Article  Google Scholar 

  236. Walter JC, Osborne DJ (1979) Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Grenelidium diphyllum. Planta 146:309–317

    Article  Google Scholar 

  237. Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100(1):352–357

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  238. Wang KLC, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428(6986):945–950

    CAS  PubMed  Article  Google Scholar 

  239. Warner HL, Leopold AC (1971) Timing of growth regulator responses in peas. Biochem Biophys Res Commun 44:989–994

    CAS  PubMed  Article  Google Scholar 

  240. Wehmer C (1900) Über einen fall intensiver schädigung einer allee durch ausstromendes leuchtgas. Zeitschr Pflanzenkrankh 10:267–269

    Google Scholar 

  241. Wehmer C (1917) Leuchtgaswirkung auf pflanzen. 2. Wirkung des gases auf gruene pflanzen. Ber Deut Bot Ges 35:318–322

    CAS  Google Scholar 

  242. Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22(11):1613–1616

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  243. Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York, p 294

    Google Scholar 

  244. White MF, Vasquez J, Yang SF, Kirsch JF (1994) Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli. Kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci USA 91(26):12428–12432

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  245. Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270(5243):1807–1809

    CAS  PubMed  Article  Google Scholar 

  246. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15(5):444–447

    CAS  PubMed  Article  Google Scholar 

  247. Williams RAN, Smith AR, Hall MA (1987) Characterisation and purification of an ethylene binding component from developing cotyledons of Phaseolus vulgaris L. In: Klambt D (ed) Plant Hormone Receptors, vol 10. Springer-Verlag, Berlin, pp 303–314

    Google Scholar 

  248. Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12(3):443–455

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  249. Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119(2):521–529

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  250. Woffenden LM, Priestley JH (1924) The toxic action of coal gas upon plants. II. The effect of coal gas upon cork and lenticel formation. Ann Appl Biol 11:42–53

    CAS  Article  Google Scholar 

  251. Woltering E (1987) Effects of ethylene on ornamental pot plants: a classification. Sci Hort 31:283–294

    Article  Google Scholar 

  252. Xie F, Liu Q, Wen C-K (2006) Receptor signal output mediated by the ETR1 N-terminus is primarily subfamily I receptor dependent. Plant Physiol 142:492–508

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  253. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    CAS  Article  Google Scholar 

  254. Yang SF, Ku HS, Pratt HK (1966) Ethylene production from methionine as mediated by flavin mononucleotide. Biochem Biophys Res Commun 24(5):739–743

    CAS  PubMed  Article  Google Scholar 

  255. Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF (1990) Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 87:7930–7964

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  256. Yip WK, Dong JG, Yang SF (1991) Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits. Plant Physiol 95(1):251–257

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  257. Yoo S-D, Cho Y-H, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789–795

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  258. Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  259. Zhou X, Liu Q, Xie F, Wen C-K (2007) RTE1 is a Golgi-Associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145(1):75–86

    PubMed Central  CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation Grants (IOS-1254423) to BMB and (MCB-1244303) to CC, and a University of Maryland Ann G. Wylie Dissertation Fellowship to JMS. The authors thank Roxane Bouten, John Clay, Randy Lacey, and Jaden Lee for comments on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brad M. Binder.

Additional information

Arkadipta Bakshi and Jennifer M. Shemansky have contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakshi, A., Shemansky, J.M., Chang, C. et al. History of Research on the Plant Hormone Ethylene. J Plant Growth Regul 34, 809–827 (2015). https://doi.org/10.1007/s00344-015-9522-9

Download citation

Keywords

  • Ethylene
  • Biosynthesis
  • Illuminating gas
  • Signal transduction
  • Triple response
  • Mutant
  • Arabidopsis
  • Hormone