Advertisement

Journal of Plant Growth Regulation

, Volume 34, Issue 4, pp 809–827 | Cite as

History of Research on the Plant Hormone Ethylene

  • Arkadipta Bakshi
  • Jennifer M. Shemansky
  • Caren Chang
  • Brad M. Binder
Article

Abstract

Ethylene is the simplest of the olefin gasses and was the first known gaseous biological signaling molecule. It is synthesized by plants during certain stages of development and in response to abiotic and biotic stresses. Ethylene affects many aspects of plant growth, development as well as responses to environmental cues. Research leading to the discovery of ethylene as a plant hormone started in the 1800s with scientists examining the effects of illuminating gas on plants. In 1901, Dimitry Neljubow determined that ethylene is the active component of illuminating gas that affects plants and thus launched this important field of research. It is generally accepted that in 1934 Richard Gane provided the conclusive evidence that plants biosynthesize ethylene. This early research showed that ethylene is both biosynthesized and sensed by plants. From the 1930s to the 1960s, there was scant research on ethylene as a hormone because many researchers did not believe that ethylene was indeed a plant hormone and because that the detection of ethylene was difficult. However, in the late 1950s, the application of gas chromatography led to an increased interest in ethylene research. From the 1960s through the early 1980s, the biochemical pathway for ethylene biosynthesis in plants was elucidated and membrane-bound ethylene-binding sites were discovered and characterized. The use of Arabidopsis thaliana as a model plant system and the widespread use of molecular biological techniques starting in the 1980s correlates with a second and larger increase in ethylene research productivity. Information gleaned from this model plant is now being applied to many plant species. In recent years, detailed models for the regulation of ethylene biosynthesis and ethylene signal transduction have emerged. This article provides an overview of the key historical discoveries regarding ethylene as a plant hormone.

Keywords

Ethylene Biosynthesis Illuminating gas Signal transduction Triple response Mutant Arabidopsis Hormone 

Notes

Acknowledgments

This work was supported by National Science Foundation Grants (IOS-1254423) to BMB and (MCB-1244303) to CC, and a University of Maryland Ann G. Wylie Dissertation Fellowship to JMS. The authors thank Roxane Bouten, John Clay, Randy Lacey, and Jaden Lee for comments on the manuscript.

References

  1. Abeles F, Morgan P, Saltveit MJ (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego 414 p Google Scholar
  2. Abeles FB, Forrence LE, Leather GR (1971) Ethylene air pollution. Plant Physiol 48:504–505PubMedCentralPubMedCrossRefGoogle Scholar
  3. Abeles FB, Heggestad HE (1973) Ethylene: An urban air pollutant. J Air Pollut Control Assoc 23:517–521PubMedCrossRefGoogle Scholar
  4. Abeles FB, Holm RE (1967) Abscission: the role of protein synthesis. Ann NY Acad Sci 144:367–373CrossRefGoogle Scholar
  5. Abeles FB, Rubinstein B (1964) Cell-free ethylene evolution from etiolated pea seedlings. Defense Documentation Center.Google Scholar
  6. Adams DO, Yang SF (1977) Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol 60(6):892–896PubMedCentralPubMedCrossRefGoogle Scholar
  7. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:326–330CrossRefGoogle Scholar
  8. Aharoni N, Lieberman N, Sisler HD (1979) Patterns of ethylene production in senescing leaves. Plant Physiol 61:332–358Google Scholar
  9. Alexander FW, Sandmeier E, Mehta PK, Christen P (1994) Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. Eur J Biochem 219(3):953–960PubMedCrossRefGoogle Scholar
  10. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284(5423):2148–2152PubMedCrossRefGoogle Scholar
  11. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22(7):2384–2401PubMedCentralPubMedCrossRefGoogle Scholar
  12. Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26(2):92–105CrossRefGoogle Scholar
  13. Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103(20):7923–7928PubMedCentralPubMedCrossRefGoogle Scholar
  14. Baur AH, Yang SF (1972) Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochem 49:3207–3214CrossRefGoogle Scholar
  15. Baur AH, Yang SF, Pratt HK (1971) Ethylene biosynthesis in fruit tissues. Plant Physiol 47(5):696–699PubMedCentralPubMedCrossRefGoogle Scholar
  16. Beyer J (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–371PubMedCentralPubMedCrossRefGoogle Scholar
  17. Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB (2004a) Short-term growth responses to ethylene in Arabidopsis seedlings are EIN3/EIL1 independent. Plant Physiol 136(2):2921–2927PubMedCentralPubMedCrossRefGoogle Scholar
  18. Binder BM, O’Malley RC, Wang W, Moore JM, Parks BM, Spalding EP, Bleecker AB (2004b) Arabidopsis seedling growth response and recovery to ethylene. a kinetic analysis. Plant Physiol 136(2):2913–2920PubMedCentralPubMedCrossRefGoogle Scholar
  19. Binder BM, O’Malley RC, Wang W, Zutz TC, Bleecker AB (2006) Ethylene stimulates nutations that are dependent on the ETR1 receptor. Plant Physiol 142(4):1690–1700PubMedCentralPubMedCrossRefGoogle Scholar
  20. Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemman G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3-Binding F-Box proteins, EBF1 and 2 have distinct but overlapping roles in regulating ethylene signaling. Plant Cell 19:509–523PubMedCentralPubMedCrossRefGoogle Scholar
  21. Binder BM, Rodríguez FI, Bleecker AB (2010) The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis. J Biol Chem 285(48):37263–37270PubMedCentralPubMedCrossRefGoogle Scholar
  22. Bisson MMA, Groth G (2010) New insight in ethylene signaling: autokinase activity of ETR1 modulates the interaction of receptors and EIN2. Mol Plant 3(5):882–889PubMedCrossRefGoogle Scholar
  23. Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424(1):1–6PubMedCrossRefGoogle Scholar
  24. Bleecker AB, Kenyon WH, Somerville SC, Kende H (1986) Use of monoclonal antibodies in the purification and characterization of 1-aminocyclopropane-1-carboxylate synthase, an enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA 83(20):7755–7759PubMedCentralPubMedCrossRefGoogle Scholar
  25. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089PubMedCrossRefGoogle Scholar
  26. Boller T (1984) Superinduction of ACC synthase in tomato pericarp by lithium ions. In: Fuchs Y, Chalutz E (eds) Ethylene: Biochemical, physiological and applied aspects. Marinus Nijhoff/Dr W. junk Publishers, New York, pp 87–88CrossRefGoogle Scholar
  27. Boller T, Herner RC, Kende H (1979) Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145:293–303PubMedCrossRefGoogle Scholar
  28. Boller T, Gehri A, Mauch F, Vogeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157:22–31PubMedCrossRefGoogle Scholar
  29. Burg SP (1973) Ethylene in plant growth. Proc Natl Acad Sci USA 70:591–597PubMedCentralPubMedCrossRefGoogle Scholar
  30. Burg SP, Burg EA (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol 42:144–152PubMedCentralPubMedCrossRefGoogle Scholar
  31. Burg SP, Clagett CO (1967) Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem Biophys Res Commun 27(2):125–130PubMedCrossRefGoogle Scholar
  32. Burg SP, Stolwijk JAJ (1959) A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J Biochem Micro Technol Eng 1:245–259CrossRefGoogle Scholar
  33. Cancel JD, Larsen PB (2002) Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129(4):1557–1567PubMedCentralPubMedCrossRefGoogle Scholar
  34. Capitani G, Hohenester E, Feng L, Storici P, Kirsch JF, Jansonius JN (1999) Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294(3):745–756PubMedCrossRefGoogle Scholar
  35. Chace EM (1934) Health problems connected with the ethylene treatment of fruits. Am J Pub Health 24:1152–1156PubMedCentralPubMedCrossRefGoogle Scholar
  36. Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10(6):291–296PubMedCrossRefGoogle Scholar
  37. Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15(2):545–559PubMedCentralPubMedCrossRefGoogle Scholar
  38. Chang C, Bowman JL, DeJohn AW, Lander ES, Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85(18):6856–6860PubMedCentralPubMedCrossRefGoogle Scholar
  39. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262(5133):539–544PubMedCrossRefGoogle Scholar
  40. Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89(7):1133–1144PubMedCrossRefGoogle Scholar
  41. Chen Y-F, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277(22):19861–19866PubMedCrossRefGoogle Scholar
  42. Chen T, Liu J, Lei G, Liu Y-F, Li Z-G, Tao J-J, Hao Y-J, Cao Y-R, Lin Q, Zhang W-K, Ma B, Chen S-Y, Zhang J-S (2009) Effects of tobacco ethylene receptor mutations on receptor kinase activity, plant growth and stress responses. Plant Cell Physiol 50(9):1636–1650PubMedCrossRefGoogle Scholar
  43. Chen Y-F, Gao Z, Kerris RJ 3rd, Wang W, Binder BM, Schaller GE (2010) Ethylene receptors function as components of high-molecular-mass protein complexes in Arabidopsis. PLoS One 5(1):e8640. doi: 10.1371/journal.pone.0008640 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Chen R, Binder BM, Garrett WM, Tucker ML, Cooper B, Chang C (2011) Proteomic responses in Arabidopsis thaliana seedlings treated with ethylene. Mol Biosyst 7:2637–2650PubMedCrossRefGoogle Scholar
  45. Chou TC, Talalay P (1972) The mechanism of S-adenosyl-l-methionine synthesis by purified preparations of bakers’ yeast. Biochemistry 11(6):1065–1073PubMedCrossRefGoogle Scholar
  46. Christians M, Ginerich D, Hansen M, Binder B, Kieber J, Vierstra R (2009) The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332–345PubMedCentralPubMedCrossRefGoogle Scholar
  47. Clark KL, Larsen PB, Wang XX, Chang C (1998) Association of the Arabidopsis CTR1 raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95(9):5401–5406PubMedCentralPubMedCrossRefGoogle Scholar
  48. Cousins HH (1910) Agricultural experiments: citrus. Jam Dept Ag Ann Rep 7:15Google Scholar
  49. Crocker W (1913) The effects of advancing civilization upon plants. School Sci Math 13(4):277–289CrossRefGoogle Scholar
  50. Crocker W, Knight LI (1908) Effect of illuminating gas and ethylene upon flowering carnations. Bot Gaz 46:259–276CrossRefGoogle Scholar
  51. Crocker W, Knight LI, Rose RC (1913) A delicate seedling test. Science 37:380–381Google Scholar
  52. Crocker W, Zimmerman PW, Hitchcock AE (1932) Ethylene-induced epinasty of leaves and the relation of gravity to it. Cont Boyce Thompson Inst 4:177–218Google Scholar
  53. Crocker W, Hitchcock AE, Zimmerman PW (1935) Similarities in the effects of ethylene and the plant auxins. Cont Boyce Thompson Inst 7:231–238Google Scholar
  54. Davies KM, Grierson D (1989) Identification of cDNA clones for tomato (Lycopersicon esculentum Mill) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta 179(1):73–80PubMedCrossRefGoogle Scholar
  55. De Paepe A, Van Der Straeten D (2005) Ethylene biosynthesis and signaling: an overview. Vitam Horm 72:399–430PubMedCrossRefGoogle Scholar
  56. Denny FE (1923) Method of coloring citrus fruits. US Patent #1,475,938.Google Scholar
  57. Denny FE (1924) Hastening the coloration of lemons. J Agri Res 27:757–769Google Scholar
  58. Deuber CG (1932) Stimulative effects of illuminating gas on trees. Science 75(1949):496–497PubMedCrossRefGoogle Scholar
  59. Dong JG, Kim WT, Yip WK, Thompson GA, Li LM, Bennett AB, Yang SF (1991a) Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185(1):38–45PubMedCrossRefGoogle Scholar
  60. Dong JG, Yip WK, Yang SF (1991b) Monoclonal antibodies against apple 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol 32(1):25–31Google Scholar
  61. Dong JG, Fernandezmaculet JC, Yang SF (1992) Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89(20):9789–9793PubMedCentralPubMedCrossRefGoogle Scholar
  62. Dong C-H, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286PubMedCentralPubMedCrossRefGoogle Scholar
  63. Dong C-H, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C (2010) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1. J Biol Chem 285(52):40706–40713PubMedCentralPubMedCrossRefGoogle Scholar
  64. Doubt SL (1917) The response of plants to illuminating gas. Bot Gaz 63(3):209–224CrossRefGoogle Scholar
  65. Eulenberg H (1876) Handbuch der gewerbehygiene auf experimenteller grundlage. August Hirschwald, Berlin 928 p Google Scholar
  66. Evans DE, Bengochea T, Cairns AJ, Dodds JH, Hall MA (1982a) Studies on ethylene binding by cell-free preparations from cotyledons of Phaseolus vulgaris L.: subcellular localization. Plant Cell Environ 5:101–107Google Scholar
  67. Evans DE, Dodds JH, Lloyd PC, apGwynn I, Hall MA (1982b) A study of the subcellular localisation of an ethylene binding site in developing cotyledons of Phaseolus vulgaris L. by high resolution autoradiography. Planta 154:48–52PubMedCrossRefGoogle Scholar
  68. Eyal Y, Meller Y, Levy S, Fluhr R (1993) A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4:225–234PubMedCrossRefGoogle Scholar
  69. Fahnestock GW (1858) Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants. Proc Acad Nat Sci Phil 9–10:118–134Google Scholar
  70. Frey SC (1918) Pericat v. Philadelphia Suburban Gas Co. In: The York Legal Record, Wiest, A.C. edn., vol 32 York Legal Record Printers, York, pp 125–127Google Scholar
  71. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101(17):6803–6808PubMedCentralPubMedCrossRefGoogle Scholar
  72. Galil J (1968) An ancient technique for ripening sycomore fruit in East-Mediterranean countries. Econ Bot 22:178–190CrossRefGoogle Scholar
  73. Gamble RL, Coonfield ML, Schaller GE (1998) Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95(13):7825–7829PubMedCentralPubMedCrossRefGoogle Scholar
  74. Gamble RL, Qu X, Schaller GE (2002) Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128(4):1428–1438PubMedCentralPubMedCrossRefGoogle Scholar
  75. Gane R (1934) Production of ethylene by some fruits. Nature 134:1008CrossRefGoogle Scholar
  76. Gane R (1935) The formation of ethylene by plant tissue and its significance in the ripening of fruit. J Pomol Hort Sci 13:351–358Google Scholar
  77. Gao ZY, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schaller GE (2003) Localization of the raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278(36):34725–34732PubMedCrossRefGoogle Scholar
  78. Gao Z, Wen C-K, Binder BM, Chen Y-F, Chang J, Chiang Y-H, Kerris RJ III, Chang C, Schaller GE (2008) Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis. J Biol Chem 283(35):23801–23810PubMedCentralPubMedCrossRefGoogle Scholar
  79. Giardin JPL (1864) Einfluss des leuchtgases auf die promenaden und strassenbaüme. Jahresb Agrikultur 7:199–200Google Scholar
  80. Giovanelli J, Mudd SH, Datko AH (1985) Quantitative-analysis of pathways of methionine metabolism and their regulation in Lemna. Plant Physiol 78(3):555–560PubMedCentralPubMedCrossRefGoogle Scholar
  81. Goeschl JD, Kays SJ (1975) Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean, and cotton seedlings. Plant Physiol 55:670–677PubMedCentralPubMedCrossRefGoogle Scholar
  82. Gordon RJ, Mayrsohn H, Ingels RM (1968) C2-C5 hydrocarbons in the Los Angeles atmosphere. Envir Sci Technol 2:1117–1120CrossRefGoogle Scholar
  83. Gray WM (2004) Hormonal regulation of plant growth and development. PLoS Biol 283:e311CrossRefGoogle Scholar
  84. Grefen C, Städele K, Růžička K, Obrdlik P, Harter K, Horák J (2008) Subcellular localization and In vivo interaction of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320PubMedCrossRefGoogle Scholar
  85. Guo HW, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115(6):667–677PubMedCrossRefGoogle Scholar
  86. Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523PubMedCentralPubMedCrossRefGoogle Scholar
  87. Hall AE, Bleecker AB (2003) Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1 etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15(9):2032–2041PubMedCentralPubMedCrossRefGoogle Scholar
  88. Hall AE, Chen QHG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121(1):291–299PubMedCentralPubMedCrossRefGoogle Scholar
  89. Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB (2000) Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123(4):1449–1457PubMedCentralPubMedCrossRefGoogle Scholar
  90. Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE (2012) Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 159(2):682–695PubMedCentralPubMedCrossRefGoogle Scholar
  91. Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346(6281):284–287CrossRefGoogle Scholar
  92. Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88(16):7434–7437PubMedCentralPubMedCrossRefGoogle Scholar
  93. Han L, Li G-J, Yang K-Y, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64(1):114–127PubMedGoogle Scholar
  94. Hart CM, Nagy F, Meins FJ (1993) A 61 bp enhancer element of the tobacco β-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. Plant Mol Biol 21:121–131PubMedCrossRefGoogle Scholar
  95. Harvey EM (1915) Some effects of ethylene on the metabolism of plants. Bot Gaz 60:193–214CrossRefGoogle Scholar
  96. Harvey EM, Rose EC (1915) The effects of illuminating gas on root systems. Bot Gaz 60:27–44CrossRefGoogle Scholar
  97. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97(3):383–393PubMedCrossRefGoogle Scholar
  98. Holm RE, Abeles FB (1967) Abcission: the role of RNA synthesis. Plant Physiol 42:1094–1102PubMedCentralPubMedCrossRefGoogle Scholar
  99. Horikawa S, Tsukada K (1992) Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett 312(1):37–41PubMedCrossRefGoogle Scholar
  100. Horikawa S, Ishikawa M, Ozasa H, Tsukada K (1989) Isolation of a cDNA encoding the rat liver S-adenosylmethionine synthetase. Eur J Biochem 184(3):497–501PubMedCrossRefGoogle Scholar
  101. Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K (1990) Molecular cloning and nucleotide sequence of cDNA-encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem 265(23):13683–13686PubMedGoogle Scholar
  102. Horton RF, Osborne DJ (1967) Senescence, abscission and cellulase activity in Phaseolus vulgaris. Nature 217:1086–1088CrossRefGoogle Scholar
  103. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271PubMedCrossRefGoogle Scholar
  104. Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269(5231):1712–1714PubMedCrossRefGoogle Scholar
  105. Hua J, Sakai H, Nourizadeh S, Chen QHG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10(8):1321–1332PubMedCentralPubMedCrossRefGoogle Scholar
  106. Huang YF, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33(2):221–233PubMedCrossRefGoogle Scholar
  107. Huelin GE, Kennett BH (1959) Nature of olefines produced by apples. Nature 184:996CrossRefGoogle Scholar
  108. Hun MT (1897) Armbruster v. Auburn Gas Light Co. In: Reports of Cases Heard and Determined in the Appellate Division of the Supreme Court of the State of New York, vol 18. Banks & Brothers, Albany, pp 447–451Google Scholar
  109. Jackson MB (1983) Regulation of root growth and morphology by ethylene and other externally applied growth substances. In: Jackson M, Stead A (eds) Growth Regulators in Root Development. Monograph No. 10. British Plant Growth Regulator Group, London, pp 103-116Google Scholar
  110. Jackson MB, Morrow IB, Osborne DJ (1972) Abscisssion and dehiscence in the squirting cucumber, Ecballium elaterium. Regulation by ethylene. Can J Bot 50:1464–1471Google Scholar
  111. John P (1983) The coupling of ethylene biosynthesis to a transmembrane, electrogenic proton flux. FEBS Lett 152(2):141–143CrossRefGoogle Scholar
  112. John P, Porter AJR, Miller AJ (1985) Activity of the ethylene-forming enzyme measured In vivo at different cell potentials. J Plant Physiol 121(5):397–406CrossRefGoogle Scholar
  113. Joo S, Liu Y, Lueth A, Zhang S (2008) MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54(1):129–140PubMedCrossRefGoogle Scholar
  114. Ju C, Yoon GM, Shemansky JM, Lin D, Yin I, Chang J, Garrett W, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109(47):19486–19491PubMedCentralPubMedCrossRefGoogle Scholar
  115. Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H (2010) Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J 64(1):140–150PubMedGoogle Scholar
  116. Kende H (1998) Plant biology and the Nobel prize. Science 282(5389):627PubMedCrossRefGoogle Scholar
  117. Kidd F, West C (1933) The effects of ethylene and apple vapours on the ripening of fruits. Gt Brit Dept Sci Ind Res 1932:55–58Google Scholar
  118. Kieber JJ, Rothenberg M, Roman G, Feldman KA, Ecker JR (1993) CTR1, A negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441PubMedCrossRefGoogle Scholar
  119. Kim H, Helmbrecht EE, Stalans MB, Schmitt C, Patel N, Wen C-K, Wang W, Binder BM (2011) Ethylene receptor ETR1 domain requirements for ethylene responses in Arabidopsis seedlings. Plant Physiol 156:417–429PubMedCentralPubMedCrossRefGoogle Scholar
  120. Kim J, Wilson RL, Case JB, Binder B (2012) A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. Plant Physiol 160(3):1567–1580PubMedCentralPubMedCrossRefGoogle Scholar
  121. Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135(2):660–667PubMedCentralPubMedCrossRefGoogle Scholar
  122. Knight LI, Crocker W (1913) Toxicity of smoke. Bot Gaz 55:337–371CrossRefGoogle Scholar
  123. Knight LI, Rose RC, Crocker W (1910a) Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31:635–636Google Scholar
  124. Knight LI, Rose RC, Crocker W (1910b) A new method of detecting traces of illuminating gas. Science 31:636Google Scholar
  125. Kny L (1871) Um den einfluss des leuchtgases auf die baumvegetation zu prüfen. Bot Zeit 29:852–854Google Scholar
  126. Konings H, Jackson MB (1979) A relationship between rates of ethylene production by roots and the promoting or inhibiting effects of exogenous ethylene and water on root elongation. Zeitschr Pflanzenphysiol 92:385–397CrossRefGoogle Scholar
  127. Koorneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61(6):909–921CrossRefGoogle Scholar
  128. Koshland DE (1993) The two-component pathway comes to eukaryotes. Science 262:532PubMedCrossRefGoogle Scholar
  129. Ku HS, Suge H, Rappaport L, Pratt HK (1970) Stimulation of rice coleoptile growth by ethylene. Planta 90(4):333–339PubMedCrossRefGoogle Scholar
  130. Lackner C (1873) Gärnerische plaudereine. Monatsschrift des vereines zür beförderund des gartenbaues in den königl. Preuss Staaten 16:16–22Google Scholar
  131. Larsen PB, Woodson WR (1991) Cloning and nucleotide sequence of a S-adenosylmethionine synthetase cDNA from carnation. Plant Physiol 96(3):997–999PubMedCentralPubMedCrossRefGoogle Scholar
  132. Lieberman M, Kunishi AT (1965) Ethylene production from methionine. Biochem J 97(2):449–459PubMedCentralPubMedCrossRefGoogle Scholar
  133. Lieberman M, Mapson LW (1964) Genesis and biogenesis of ethylene. Nature 204:343–345CrossRefGoogle Scholar
  134. Lieberman M, Kunishi A, Mapson LW, Wardale DA (1966) Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol 41(3):376–382PubMedCentralPubMedCrossRefGoogle Scholar
  135. Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16(12):3386–3399PubMedCentralPubMedCrossRefGoogle Scholar
  136. Lürssen K, Naumann K, Schröder R (1979a) 1-aminocyclopropane-1-carboxylic acid — A new intermediate of ethylene biosynthesis. Naturwissenschaf 66:264–265CrossRefGoogle Scholar
  137. Lürssen K, Naumann K, Schröder R (1979b) 1-aminocyclopropane-l-carboxylic acid - An intermediate of the ethylene biosynthesis in higher plants. Zeitschr Pflanzenphysiol 92(4):285–294CrossRefGoogle Scholar
  138. Lyzenga WJ, Booth JK, Stone SL (2012) The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J 71(1):23–34PubMedCrossRefGoogle Scholar
  139. Ma Q-H, Wang X-M (2003) Characterization of an ethylene receptor homologue from wheat and its expression during leaf senescence. J Exp Bot 54(386):1489–1490PubMedCrossRefGoogle Scholar
  140. Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC Press Inc, Boca Raton 337 p Google Scholar
  141. Mayak S, Halevy AH (1972) Interrelationships of ethylene and abscissic acid in the control of rose petal senescence. Plant Physiol 50:341–346PubMedCentralPubMedCrossRefGoogle Scholar
  142. McAfee JA, Morgan PW (1971) Rates of production and internal levels of ethylene in vegetative cotton plant. Plant Cell Physiol 12:839–847Google Scholar
  143. McSteen P, Zhao YK (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473PubMedCrossRefGoogle Scholar
  144. Meigh DR (1959) Nature of olefines produed by apples. Nature 184:1072–1073CrossRefGoogle Scholar
  145. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Op Plant Biol 16(5):554–560CrossRefGoogle Scholar
  146. Métraux J-P, Kende H (1983) The role of ethylene in the growth response of submerged deep water rice. Plant Physiol 72(2):441–446PubMedCentralPubMedCrossRefGoogle Scholar
  147. Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229:1214–1218PubMedCrossRefGoogle Scholar
  148. Michener HD (1938) The action of ethylene on plant growth. Am J Bot 25:711–720CrossRefGoogle Scholar
  149. Miller EV (1947) The story of ethylene. Sci Monthly 65(4):335–342Google Scholar
  150. Mita S, Kawamura S, Yamawaki K, Nakamura K, Hyodo H (1998) Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol 39(11):1209–1217PubMedCrossRefGoogle Scholar
  151. Miyazaki JM, Yang SF (1987) The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant 69(2):366–370CrossRefGoogle Scholar
  152. Molisch H (1884) Ueber die ablenkung der wurzeln von ihrer normalen wachstumsrichtung durch gaze (Aërotropismus). Sizungsber Kaiserl Akad Wiss Wien 90:111–196Google Scholar
  153. Moussatche P, Klee HJ (2004) Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279(47):48734–48741PubMedCrossRefGoogle Scholar
  154. Musgrave A, Walters J (1974a) Ethylene-stimulated growth and auxin transport in Ranunculus sceleratus petioles. New Phytol 72:783–789CrossRefGoogle Scholar
  155. Musgrave A, Walters J (1974b) Ethylene and buoyancy control rachis elongation of the semi-aquatic fern Regnellidium diphyllum. Planta 121:51–56PubMedCrossRefGoogle Scholar
  156. Musgrave A, Jackson MB, Ling E (1972) Callitriche stem elongation is controlled by ethylene and gibberellin. Nat New Biol 238:93–96CrossRefGoogle Scholar
  157. Nakagawa N, Nakajima N, Imaseki H (1988) Immunochemical difference of wound-induced 1-aminocyclopropane-1-carboxylate synthase from the auxin-induced enzyme. Plant Cell Physiol 29(7):1255–1259Google Scholar
  158. Nakagawa N, Mori H, Yamazaki K, Imaseki H (1991) Cloning of a complementary DNA for auxin-induced 1-aminocyclopropane-1-carboxylate synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol 32(8):1153–1163Google Scholar
  159. Nakajima N, Imaseki H (1986) Purification and properties of 1-aminocyclopropane-1-carboxylate synthase of mesocarp of Cucurbita maxima Duch. fruits. Plant Cell Physiol 27(6):969–980Google Scholar
  160. Nakajima N, Mori H, Yamazaki K, Imaseki H (1990) Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31(7):1021–1029Google Scholar
  161. Neljubow D (1901) Uber die horizontale nutation der stengel von Pisum sativum und einiger anderen pflanzen. Beih Bot Zentralb 10:128–139Google Scholar
  162. Nord FF (1936) Effects of ethylene on the plant growth hormone. Science 83(2151):284PubMedCrossRefGoogle Scholar
  163. Novikova GV, Moshkov IE, Smith AR, Hall MA (2000) The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett 474:29–32PubMedCrossRefGoogle Scholar
  164. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedCentralPubMedCrossRefGoogle Scholar
  165. Olmedo G, Guo HW, Gregory BD, Hourizadeh SD, Aguilar-Henonin L, Li H, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′ → 3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293PubMedCentralPubMedCrossRefGoogle Scholar
  166. Olson DC, White JA, Edelman L, Harkins RN, Kende H (1991) Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88(12):5340–5344PubMedCentralPubMedCrossRefGoogle Scholar
  167. O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41(5):651–659PubMedCrossRefGoogle Scholar
  168. Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22(6):1282–1288PubMedCentralPubMedCrossRefGoogle Scholar
  169. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Vanmontagu M, Inze D (1989a) Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1(1):81–93PubMedCentralPubMedCrossRefGoogle Scholar
  170. Peleman J, Saito K, Cottyn B, Engler G, Seurinck J, Vanmontagu M, Inze D (1989b) Structure and expression analyses of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana. Gene 84(2):359–369PubMedCrossRefGoogle Scholar
  171. Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: eBF1 and EBF2. Cell 115(6):679–689PubMedCrossRefGoogle Scholar
  172. Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra R, Genschik P (2006) The exonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057PubMedCentralPubMedCrossRefGoogle Scholar
  173. Prasad ME, Stone SL (2010) Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved ethylene biosynthesis. Plant Signal Behav 5:1425–1429PubMedCentralPubMedCrossRefGoogle Scholar
  174. Prasad ME, Schofield A, Lyzenga W, Stone SL (2010) Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol 153:1587–1596PubMedCentralPubMedCrossRefGoogle Scholar
  175. Priestley JH (1922) The toxic action of traces of coal gas upon plants. Ann Appl Biol 9:146–155CrossRefGoogle Scholar
  176. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521PubMedCentralPubMedCrossRefGoogle Scholar
  177. Qiao H, Shen Z, S-sC Huang, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338(6105):390–393PubMedCentralPubMedCrossRefGoogle Scholar
  178. Qu X, Schaller GE (2004) Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136(2):2961–2970PubMedCentralPubMedCrossRefGoogle Scholar
  179. Qu X, Hall B, Gao Z, Schaller GE (2007) A strong constitutive ethylene-response phenotype conferred on Arabidopsis plants containing null mutations in the ethylene receptors ETR1 and ERS1. BMC Plant Biol 7(1):3PubMedCentralPubMedCrossRefGoogle Scholar
  180. Ramalingam K, Lee KM, Woodard RW, Bleecker AB, Kende H (1985) Stereochemical course of the reaction catalyzed by the pyridoxal phosphate-dependent enzyme 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 82(23):7820–7824PubMedCentralPubMedCrossRefGoogle Scholar
  181. Rauser WE, Horton RF (1975) Rapid effects of indoleacetic acid and ethylene on the growth of intact pea roots. Plant Physiol 55:443–447PubMedCentralPubMedCrossRefGoogle Scholar
  182. Resnick JS, Wen C-K, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103(20):7917–7922PubMedCentralPubMedCrossRefGoogle Scholar
  183. Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56(3):423–431PubMedCentralPubMedCrossRefGoogle Scholar
  184. Richards HM, MacDougal DT (1904) The influence of carbon monoxide and other gases upon plants. Bull Torrey Bot Club 31(12):57–66CrossRefGoogle Scholar
  185. Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382CrossRefGoogle Scholar
  186. Rivarola M, McClellan CA, Resnick JS, Chang C (2009) ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed by benetic interaction with RTE1. Plant Physiol 150(2):547–551PubMedCentralPubMedCrossRefGoogle Scholar
  187. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283(5404):996–998PubMedCrossRefGoogle Scholar
  188. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana - five novel mutant loci integrated into a stress response pathway. Genetics 139(3):1393–1409PubMedCentralPubMedGoogle Scholar
  189. Rose-John S, Kende H (1985) Short-term growth response of deep-water rice to submergence and ethylene. Plant Sci 38(2):129–134CrossRefGoogle Scholar
  190. Sakai H, Hua J, Chen QHG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95(10):5812–5817PubMedCentralPubMedCrossRefGoogle Scholar
  191. Sanders IO, Harpham NVJ, Raskin I, Smith AR, Hall MA (1991) Ethylene binding in wild type and mutant Arabidopsis thaliana (L.) Heynh. Ann Bot 68:97–103Google Scholar
  192. Satler SO, Kende H (1985) Ethylene and the growth of rice seedlings. Plant Physiol 79(1):194–198PubMedCentralPubMedCrossRefGoogle Scholar
  193. Sato T, Theologis A (1989) Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86(17):6621–6625PubMedCentralPubMedCrossRefGoogle Scholar
  194. Sato T, Oeller PW, Theologis A (1991) The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. J Biol Chem 266(6):3752–3759PubMedGoogle Scholar
  195. Sato-Nara K, Yuhashi K-I, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage- and tissue-specific expression of ethylene receptor homolog genes during fruit development in Muskmelon. Plant Physiol 120(1):321–330PubMedCentralPubMedCrossRefGoogle Scholar
  196. Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270(5243):1809–1811PubMedCrossRefGoogle Scholar
  197. Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM, Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsis forms a disulfide-linked dimer. J Biol Chem 270(21):12526–12530PubMedCrossRefGoogle Scholar
  198. Scott WE, Stephens ER, Hanst PC, Doerr RC (1957) Further developments in the chemistry of the atmosphere. Proc Am Petrol Inst 37:171–183Google Scholar
  199. Sebastià CH, Hardin SC, Clouse SD, Kieber JJ, Huber SC (2004) Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428(1):81–91CrossRefGoogle Scholar
  200. Sedgwick WT, Schneider F (1911) The relation of illuminating gas to public health. J Am Pub Health Assoc 1(5):385–390CrossRefGoogle Scholar
  201. Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants. doi: 10.1093/aobpla/plt1010 PubMedCentralPubMedGoogle Scholar
  202. Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53(368):399–406PubMedCrossRefGoogle Scholar
  203. Sievers AF, True RH (1912) A preliminary study of the forced curing of lemons as practiced in California. USDA Bulletin no. 232:1–38Google Scholar
  204. Sisler EC (1979) Measurement of ethylene binding in plant tissue. Plant Physiol 64:538–542PubMedCentralPubMedCrossRefGoogle Scholar
  205. Sisler EC (1980) Partial purification of an ethylene-binding component from plant tissue. Plant Physiol 66:404–406PubMedCentralPubMedCrossRefGoogle Scholar
  206. Sisler EC (1982) Ethylene-binding properties of a triton X-100 extract of mung bean sprouts. J Plant Growth Regul 1:211–218Google Scholar
  207. Sisler EC (1991) Ethylene-binding components in plants. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press Inc, Baca Raton, pp 81–99Google Scholar
  208. Sisler EC, Pian A (1973) Effect of ethylene and cyclic olefins on tobacco leaves. Tobacco Sci 17:68–72Google Scholar
  209. Skottke KR, Yoon GM, Kieber JJ, DeLong A (2011) Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet 7(4):e1001370PubMedCentralPubMedCrossRefGoogle Scholar
  210. Smith AR, Robertson D, Sanders IO, Williams RAN, Hall MA (1987) Ethylene binding sites. In: Klambt D (ed) Plant hormone receptors. Springer-Verlag, Berlin, pp 229–238CrossRefGoogle Scholar
  211. Söding H (1923) Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet? Ber dtsch bot Ges 71:396–400Google Scholar
  212. Solano R, Stepanova A, Chao QM, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714PubMedCentralPubMedCrossRefGoogle Scholar
  213. Somerville C, Koorneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3(11):883–889PubMedCrossRefGoogle Scholar
  214. Sorauer P (1916) Untersuchungen über leuchtgasbeschädigungen. Zeitschr Pflanzenkrankh 26:129–183Google Scholar
  215. Späth Meyer (1873) Beobachtungen über den einfluss des leuchtgases auf die vegetation von bäumen. Landwirtsch Versuchs-Stat 16:336–341Google Scholar
  216. Starling EH (1905) The Croonian Lectures. I. On the chemical correlation of the functions of the body. Lancet 166:399–441Google Scholar
  217. Stiness EC (1909) Richard H. Dunbar vs. Bristol County Gas and Electric Complany. Reports of Cases Argued and Determined in the Supreme Court of Rhode Island, vol 29. E.L. Freeman Company, Providence, pp 211–213Google Scholar
  218. Stone GE (1907) Effect of escaping illuminating gas on trees. Nineteenth Annual Report of the Massachusetts Agricultural Experimental Station. Wright & Potter Printing Company, Boston, pp 180–185Google Scholar
  219. Tabor CW, Tabor H (1984) Methionine adenosyltransferase (S-adenosylmethionine synthetase) and S-adenosylmethionine decarboxylase. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 56., pp 251–282Google Scholar
  220. Takahashi H, Kobayashi T, Sato-Nara K, Tomita K-o, Ezura H (2002) Detection of ethylene receptor protein Cm-ERS1 during fruit development in melon (Cucumis melo L.). J Exp Bot 53(368):415–422PubMedCrossRefGoogle Scholar
  221. Tan S-T, Xue H-W (2014) Caseine kinase 1 regulates ethylene synthesis by phosphorylating and promoting turnover of ACS5. Cell Rep 9(5):1692–1702PubMedCrossRefGoogle Scholar
  222. Tarun AS, Theologis A (1998) Complementation analysis of mutants of 1-aminocyclopropane-1-carboxylate synthase reveals the enzyme is a dimer with shared active sites. J Biol Chem 273(20):12509–12514PubMedCrossRefGoogle Scholar
  223. Tarun AS, Lee JS, Theologis A (1998) Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc Natl Acad Sci USA 95(17):9796–9801PubMedCentralPubMedCrossRefGoogle Scholar
  224. Terajima Y, Nukui H, Kobayashi A, Fujimoto S, Hase S, Yoshioka T, Hashiba T, Satoh S (2001) Molecular cloning and characterization of a cDNA for a novel ethylene receptor, NT-ERS1, of tobacco (Nicotiana tabacum L.). Plant Cell Physiol 42(3):308–313PubMedCrossRefGoogle Scholar
  225. Thomas CJR, Smith AR, Hall MA (1984) The effect of solubilisation on the character of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:474–479CrossRefGoogle Scholar
  226. Thomas CJR, Smith AR, Hall MA (1985) Partial purification of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:272–277PubMedCrossRefGoogle Scholar
  227. Thompson IG (1878) Butcher v. Providence Gas company. The Albany Law Journal, vol 18. Weed, Pasons, and Company, Albany, pp 272–273Google Scholar
  228. van der Laan PA (1934) Der einfluss von aethylenen auf die wuchsstoffbildung bei Avena und Vicia. Rec Trav Bot Neerl 31:691–742Google Scholar
  229. Van der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M (1989) Purification and partial characterization of 1-aminocyclopropane-1-carboxylate synthase from tomato pericarp. Eur J Biochem 182(3):639–647PubMedCrossRefGoogle Scholar
  230. Van der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M (1990) Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87(12):4859–4863PubMedCentralPubMedCrossRefGoogle Scholar
  231. Vandenbussche F, Petrášek J, Žádníková P, Hoyerová K, Pešek B, Raz V, Swarup R, Bennett M, Zažímalová E, Benková E, Van Der Straeten D (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137(4):597–606PubMedCrossRefGoogle Scholar
  232. Ververidis P, John P (1991) Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30(3):725–727CrossRefGoogle Scholar
  233. Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95(8):4766–4771PubMedCentralPubMedCrossRefGoogle Scholar
  234. Vriezen WH, Ran Rijn CPE, Voesenek LACJ, Mariani C (1997) A homologue of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265–1271PubMedCrossRefGoogle Scholar
  235. Wallace RH (1926) The production of intumescence upon apple twigs by ethylene gas. Bull Torrey Bot Club 53:358–402CrossRefGoogle Scholar
  236. Walter JC, Osborne DJ (1979) Ethylene and auxin-induced cell growth in relation to auxin transport and metabolism and ethylene production in the semi-aquatic plant, Grenelidium diphyllum. Planta 146:309–317CrossRefGoogle Scholar
  237. Wang W, Hall AE, O’Malley R, Bleecker AB (2003) Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100(1):352–357PubMedCentralPubMedCrossRefGoogle Scholar
  238. Wang KLC, Yoshida H, Lurin C, Ecker JR (2004) Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428(6986):945–950PubMedCrossRefGoogle Scholar
  239. Warner HL, Leopold AC (1971) Timing of growth regulator responses in peas. Biochem Biophys Res Commun 44:989–994PubMedCrossRefGoogle Scholar
  240. Wehmer C (1900) Über einen fall intensiver schädigung einer allee durch ausstromendes leuchtgas. Zeitschr Pflanzenkrankh 10:267–269Google Scholar
  241. Wehmer C (1917) Leuchtgaswirkung auf pflanzen. 2. Wirkung des gases auf gruene pflanzen. Ber Deut Bot Ges 35:318–322Google Scholar
  242. Wen X, Zhang C, Ji Y, Zhao Q, He W, An F, Jiang L, Guo H (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22(11):1613–1616PubMedCentralPubMedCrossRefGoogle Scholar
  243. Went FW, Thimann KV (1937) Phytohormones. Macmillan, New York, p 294Google Scholar
  244. White MF, Vasquez J, Yang SF, Kirsch JF (1994) Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli. Kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci USA 91(26):12428–12432PubMedCentralPubMedCrossRefGoogle Scholar
  245. Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270(5243):1807–1809PubMedCrossRefGoogle Scholar
  246. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15(5):444–447PubMedCrossRefGoogle Scholar
  247. Williams RAN, Smith AR, Hall MA (1987) Characterisation and purification of an ethylene binding component from developing cotyledons of Phaseolus vulgaris L. In: Klambt D (ed) Plant Hormone Receptors, vol 10. Springer-Verlag, Berlin, pp 303–314Google Scholar
  248. Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12(3):443–455PubMedCentralPubMedCrossRefGoogle Scholar
  249. Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119(2):521–529PubMedCentralPubMedCrossRefGoogle Scholar
  250. Woffenden LM, Priestley JH (1924) The toxic action of coal gas upon plants. II. The effect of coal gas upon cork and lenticel formation. Ann Appl Biol 11:42–53CrossRefGoogle Scholar
  251. Woltering E (1987) Effects of ethylene on ornamental pot plants: a classification. Sci Hort 31:283–294CrossRefGoogle Scholar
  252. Xie F, Liu Q, Wen C-K (2006) Receptor signal output mediated by the ETR1 N-terminus is primarily subfamily I receptor dependent. Plant Physiol 142:492–508PubMedCentralPubMedCrossRefGoogle Scholar
  253. Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189CrossRefGoogle Scholar
  254. Yang SF, Ku HS, Pratt HK (1966) Ethylene production from methionine as mediated by flavin mononucleotide. Biochem Biophys Res Commun 24(5):739–743PubMedCrossRefGoogle Scholar
  255. Yip WK, Dong JG, Kenny JW, Thompson GA, Yang SF (1990) Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 87:7930–7964PubMedCentralPubMedCrossRefGoogle Scholar
  256. Yip WK, Dong JG, Yang SF (1991) Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits. Plant Physiol 95(1):251–257PubMedCentralPubMedCrossRefGoogle Scholar
  257. Yoo S-D, Cho Y-H, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789–795PubMedCentralPubMedCrossRefGoogle Scholar
  258. Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028PubMedCentralPubMedCrossRefGoogle Scholar
  259. Zhou X, Liu Q, Xie F, Wen C-K (2007) RTE1 is a Golgi-Associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145(1):75–86PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Arkadipta Bakshi
    • 1
  • Jennifer M. Shemansky
    • 2
  • Caren Chang
    • 2
  • Brad M. Binder
    • 3
  1. 1.Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUSA
  3. 3.Department of Biochemistry, Cellular and Molecular Biology and the Genome Science and Technology ProgramUniversity of TennesseeKnoxvilleUSA

Personalised recommendations