Skip to main content

Analytical History of Auxin

Abstract

Auxins are a group of naturally occurring phytohormones that have numerous functions in plant growth and development. The identification and quantification of these hormones from plant tissues has a long and varied history, dating back as far as the mid-19th century. The evolution of auxin analysis closely mirrors the evolution of analytical chemistry. However, despite the fact that the methods for auxin determination have evolved since the initial bioassays, few of the techniques developed over the years have been completely abandoned, and many of them are still used in routine auxin analyses today.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abel S, Theologis A (2010) Odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  2. Abian J (1999) The coupling of gas and liquid chromatography with mass spectrometry. J Mass Spectrom 34:157–168

    CAS  Article  Google Scholar 

  3. Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012) A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol Plant 146:487–499

    CAS  PubMed  Article  Google Scholar 

  4. Allen JRF, Baker DA (1980) Free tryptophan and indole-3-acetic acid levels in the leaves and vascular pathways of Ricinus communis L. Planta 148:69–74

    CAS  PubMed  Article  Google Scholar 

  5. Allen JRF, Rivier L, Pilet PE (1982) Quantification of indol-3-yl acetic acid in pea and maize seedlings by gas chromatography-mass spectrometry. Phytochemistry 21:525–530

    CAS  Article  Google Scholar 

  6. Alwan Al-Delaimy A (2013) Effect of mineral acids on rooting response of aging mung bean (Phaseolus aureus Roxb.) cuttings via indole acetic acid level. J Agric Sci Technol A3:455–464

    Google Scholar 

  7. Andersson B, Sandberg G (1982) Identification of endogenous N-(3-indoleacetyl)aspartic acid in scots pine (Pinus sylvestris L.) by combined gas chromatography-mass spectrometry, using high-performance liquid chromatography for quantification. J Chromatogr 238:151–156

    CAS  Article  Google Scholar 

  8. Audus LI (1972) Plant growth substances, chemistry and physiology, vol I. Leonard Hill, London

    Google Scholar 

  9. Avery G, Berger J, Shalucha B (1941) The total extraction of free auxin and auxin precursor from plant tissue. Am J Bot 28:596–597

    CAS  Article  Google Scholar 

  10. Bandurski R, Schulze A (1974) Concentrations of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol 54:257–262

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  11. Bandurski R, Schulze A, Cohen J (1977) Photo regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun 79:1219–1223

    CAS  PubMed  Article  Google Scholar 

  12. Bargmann B, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann D, Estelle M, Birnbaum K (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  13. Barkawi LS, Tam YY, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, Cohen JD (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177–188

    CAS  PubMed  Article  Google Scholar 

  14. Bennet-Clark T, Ball N (1951) The diageotropic behaviour of rhizomes. J Exp Bot 2:169–203

    Article  Google Scholar 

  15. Bennet-Clark TA, Kefford NP (1953) Chromatography of the growth substances in plant extracts. Nature (London) 171:645–649

    CAS  Article  Google Scholar 

  16. Berger J, Avery GS Jr (1944) Isolation of an auxin precursor and an auxin (Indoleacetic Acid) from maize. Am J Bot 31:199–203

  17. Bialek K, Meudt W, Cohen J (1983) Indole-3-acetic acid (IAA) and IAA conjugates applied to bean stem sections: IAA content and the growth response. Plant Physiol 73:130–134

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Bittner S, Even-Chen Z (1975) A GLC procedure for determining sub-nanogram levels of indol-3-yl acetic acid. Phytochemistry 14:2455–2457

    CAS  Article  Google Scholar 

  19. Boerjan W, Genetello C, Van Montagu M, Inze D (1992) A new bioassay for auxins and cytokinins. Plant Physiol 99:1090–1098

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Böttcher C, Boss PK, Davies C (2011) Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J Exp Bot 62:4267–4280

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  21. Böttger M, Engvild K, Kaiser P (1978) Response of substituted indoleacetic acids in the indolo-α-pyrone fluorescence determination. Physiol Plant 43:62–64

    Article  Google Scholar 

  22. Boysen-Jensen P, Avery GJ, Burkholder P (1936) Growth hormones in plants. McGraw-Hill, New York

    Google Scholar 

  23. Brook JL, Biggs RH, St. John PA, Anthony DS (1967) Gas chromatography of several indole derivatives. Anal Biochem 18:453–458

    CAS  Article  Google Scholar 

  24. Bruins AP (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646

    CAS  Article  Google Scholar 

  25. Brunoud G, Wells D, Oliva M, Larrieu A, Mirabet V, Burrow A, Beeckman T, Kepinski S, Traas J, Bennett M, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    CAS  PubMed  Article  Google Scholar 

  26. Caruso JL, Zeisler CS (1983) Indole-3-acetic acid in Douglas fir seedlings: a reappraisal. Phytochemistry 22:589–590

    CAS  Article  Google Scholar 

  27. Caruso J, Smith R, Smith L, Cheng T-Y, Daves G Jr (1978) Determination of indole-3-acetic acid in Douglas fir using a deuterated analog and selected ion monitoring: comparison of microquantities in seedling and adult tree. Plant Physiol 62:841–845

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  28. Chamarro J, Östin A, Sandberg G (2001) Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry 57:179–187

    CAS  PubMed  Article  Google Scholar 

  29. Chen KH, Miller A, Patterson G, Cohen J (1988) A rapid and simple procedure for purification of indole 3 acetic acid prior to GC SIM MS analysis. Plant Physiol 86:822–825

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  30. Chen Q, Zhang B, Hicks LM, Wang S, Jez JM (2009) A liquid chromatography-tandem mass spectrometry-based assay for indole-3-acetic acid-amido synthetase. Anal Biochem 390:149–154

    CAS  PubMed  Article  Google Scholar 

  31. Ciesielski T (1872) Untersuchungen über die Abwärtskrü mmung der Wurzel. Beitr Biol Pflanzen 1:1–30

    Google Scholar 

  32. Cohen J, Bandurski R (1978) The bound auxins: protection of indole-3-acetic acid from peroxidase catalyzed oxidation. Planta 139:203–208

    CAS  PubMed  Article  Google Scholar 

  33. Cohen JD, Schulze A (1981) Double-standard isotope dilution assay. I. Quantitative assay of indole-3-acetic acid. Anal Biochem 112:249–257

    CAS  PubMed  Article  Google Scholar 

  34. Cohen JD, Baldi B, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  35. Cohen J, Bausher M, Bialek K, Buta J, Pharis R, Reed A, Slovin J (1987) Comparison of a commercial ELISA assay for indole-3-acetic acid and analysis by gas chromatography selected ion monitoring mass spectrometry using a 13C6-labeled internal standard. Plant Physiol 84:982–986

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    PubMed  Article  Google Scholar 

  37. Crozier A, Loferski K, Zaerr JB, Morris RO (1980) Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta 150:366–370

    CAS  PubMed  Article  Google Scholar 

  38. Darwin C, Darwin F (1881) The Power of movement in plants. Appleton and Company, New York

    Google Scholar 

  39. Davies NW, Smith JA, Molesworth PP, Ross JJ (2010) Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 24:1105–1110

    CAS  PubMed  Article  Google Scholar 

  40. De Condolle A-P (1832) Physiologie végétale. Bechut Jeune, Paris

    Google Scholar 

  41. DeYoe D, Zaerr J (1976) Analysis by gas-liquid chromatography and mass spectrometry. Plant Physiol 58:299–303

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  42. Diopan V, Adam V, Havel L, Rene Kizek G (2009) Phytohormones as important biologically active molecules their simple simultaneous detection. Molecules 14:1825–1839

    CAS  PubMed  Article  Google Scholar 

  43. Dobrev PI, Havlicek L, Vagner M, Malbeck J, Kaminek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr 1075:159–166

    CAS  Article  Google Scholar 

  44. Dole M, Mach L, Hines R, Mobley R, Ferguson L, Alice M (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    CAS  Article  Google Scholar 

  45. Ehmann A (1977) The van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 132:267–276

    CAS  PubMed  Article  Google Scholar 

  46. Eliasson L, Stromquist L-H, Tillberg EPP (1976) Reliability of the indole-α-pyrone fluorescence method for indole-3-acetic acid determination in crude plant extracts. Physiol Plant 36:16–19

    CAS  Article  Google Scholar 

  47. Elliott MC, Greenwood MS (1974) Indol-3yl-acetic acid in roots of Zea mays. Phytochemistry 13:239–241

    CAS  Article  Google Scholar 

  48. Epstein E, Cohen J (1981) Microscale preparation of pentafluorobenzyl esters: electron capture gas chromatographic detection of indole-3-acetic acid from plants. J Chromatogr 209:413–420

    CAS  Article  Google Scholar 

  49. Epstein E, Cohen J, Bandurski R (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65:415–421

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  50. Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    CAS  Article  Google Scholar 

  51. Fenn JB (2002) Electrospray ionization mass spectrometry: how it all began. J Biomol Tech 13:101–118

    PubMed Central  PubMed  Google Scholar 

  52. Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157

    PubMed  Article  CAS  Google Scholar 

  53. Fuchs S, Haimovich J, Fuchs Y (1971) Immunological studies of plant hormones: detection and estimation by immunological assays. Eur J Biochem 18:384–390

    CAS  PubMed  Article  Google Scholar 

  54. Fukui H, Devries J, Wittwer S, Sell H (1957) Ethyl-3-indole- acetate: an artefact in extracts of immature corn kernels. Nature 180:1205

    CAS  Article  Google Scholar 

  55. Gohlke R, McLafferty F (1993) Early gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 4:367–371

    CAS  PubMed  Article  Google Scholar 

  56. Goldschmidt E, Goren R, Monselise S, Takahashi N, Igoshi H, Yamaguchi I, Hirose K (1971) Auxins in citrus: a reappraisal. Science 174:1256–1257

    CAS  PubMed  Article  Google Scholar 

  57. Gorter C (1932) Groeistofproblemen bij Wortels, Utrecht

  58. Grayson M (ed) (2002) Measuring mass: from positive rays to proteins. Chemical Heritage Foundation, Philadelphia

    Google Scholar 

  59. Gyulai G, Kiss J, Jekkel Z, Kiss E, Heszky L (1995) A selective auxin and cytokinin bioassay based on root and shoot formation in vitro. J Plant Physiol 145:379–382

    CAS  Article  Google Scholar 

  60. Hagen G, Martin G, Li Y, Guilfoyle T (1991) Auxin-induced expression of the soybean GH3 promotor in transgenic tobacco plants. Plant Mol Biol 17:567–579

    CAS  PubMed  Article  Google Scholar 

  61. Hahn O (1923) On uranium Z and its parent. Z Phys Chem 103:180–461

    Google Scholar 

  62. Hall PJ (1980) Indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry 19:2121–2123

    CAS  Article  Google Scholar 

  63. Hamilton R, Bandurski R, Grigsby B (1961) Isolation of indole-3-acetic acid from corn kernels & etiolated corn seedlings. Plant Physiol 36:354–359

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  64. Hemberg T (1958) Auxins and growth-inhibiting substances in maize kernels. Physiol Plant 11:284–311

    CAS  Article  Google Scholar 

  65. Hevesy G, Hofer E (1934) Elimination of water from the human body. Nature 134:879

    Article  Google Scholar 

  66. Holmes JC, Morrell FA (1957) Oscillographic mass-spectrometric monitoring of gas chromatography. Appl Spectrosc 11:86–87

    CAS  Article  Google Scholar 

  67. Hunter W (1986) High-performance gas chromatographic method for the estimation of the indole-3-acetic acid content of plant materials. J Chromatogr 362:430–435

    CAS  Article  Google Scholar 

  68. Iino M, Carr D (1982) Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indolo-a-pyrone fluorescence method. Plant Physiol 69:950–956

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  69. Ilić N, Habus I, Barkawi L, Park S, Stefanic Z, Kojic-Prodic B, Cohen J, Magnus V (2005) Aminoethyl-substituted indole-3-acetic acids for the preparation of tagged and carrier-linked auxin. Bioorg Med Chem Lett 13:3229–3240

    Article  CAS  Google Scholar 

  70. Ito Y, Takeuchi T, Ishii D, Goto M (1985) Direct coupling of micro high-performance liquid chromatography with fast atom bombardment mass spectrometry. J Chromatogr 346:161–166

    CAS  Article  Google Scholar 

  71. James AT, Martin AJP (1952) Gas-liquid partition chromatography. A technique for the analysis of volatile materials. Analyst 77:915–931

    CAS  Article  Google Scholar 

  72. James AT, Martin AJP (1954) Gas-liquid chromatography: a technique for the analysis and identification of volatile materials. Br Med Bull 10:170–176

    CAS  PubMed  Google Scholar 

  73. Jepson J (1958) Indolylacetamide: a chromatographic artifact from the natural indoles, indolyl-acetylglucosiduronic acid and indolylpyruvic acid. Biochem J 69:22P

    CAS  Article  Google Scholar 

  74. Jerchel D, Müller R (1950) Papierchromatographie der β-Indolylessigsäure. Naturwiss 38:561–562

    Article  Google Scholar 

  75. Julliard J, Sotta B, Pelletier G, Miginiac E (1992) Enhancement of naphthaleneacetic acid-induced rhizogenesis in TL-DNA-transformed Brassica napus without significant modification of auxin levels and auxin sensitivity. Plant Physiol 100:1277–1282

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  76. Khalifah RA, Lewis LN, Coggins CW, Radlick PC (1965) Fluorometric, chromatographic, and spectronic evidence for the non-indolic nature of Citrus auxin. J Exp Bot 16:511–517

    CAS  Article  Google Scholar 

  77. Kögl F, Kostermans D (1934) Hetero-auxin als Stoffwechselprodukt niederer pflanzlicher Organismen XIII. Isolierung aus Hefe. Zeitschrift fur Physikalische Chemie 228:113–121

    Article  Google Scholar 

  78. Kögl F, Hagen-Smit J, Erxleben H (1934) Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Hoppe-Seyler’s Z. Physiol Chem 228:104–112

    Article  Google Scholar 

  79. Kojima K, Ohtake E, Yu Z (2002) Distribution and transport of IAA in tomato plants. J Plant Growth Regul 37:249–254

    CAS  Article  Google Scholar 

  80. Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. Kondo S, Hayata Y, Iwasaki N (2000) Effects of indole-3-acetic acid and gibberellins on fruit development and maturation of sweet cherries. Acta Hortic 514:75–82

    CAS  Article  Google Scholar 

  82. Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in arabidopsis. Plant Physiol 127:1845–1853

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  83. Leopold C (1967) Auxins and plant growth. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  84. Li X, La Motte CE, Stewart CR, Cloud NP, Wear-Bagnall S, Jiang CZ (1992) Determination of IAA and ABA in the same plant sample by a widely applicable method using GC-MS with selected ion monitoring. J Plant Growth Regul 11:55–65

    Article  Google Scholar 

  85. Li W, Zhou Y, Liu X, Yu P, Cohen J, Meyerowitz E (2013) Flower development master regulator LEAFY controls auxin response pathways in floral primordia formation. Sci Signal 6:ra23

    PubMed Central  PubMed  Google Scholar 

  86. Liang Y, Zhu X, Wu T, Zhao M, Liu H (2012) Rapid and sensitive detection of auxins and flavonoids in plant samples by high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 35:2559–2566

    CAS  PubMed  Article  Google Scholar 

  87. Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12:207–210

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  88. Linskens H, Jackson J (eds) (1985) Gas chromatography/mass spectrometry, modern methods of plant analysis, vol 3. Springer, New York

    Google Scholar 

  89. Little J (1999) Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J Chromatogr 844:1–22

    CAS  Article  Google Scholar 

  90. Liu Z-B, Ulmasov T, Shi X, Hagen G, Guilfoyle T (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. Liu X, Hegeman A, Gardner G, Cohen J (2012) Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  92. Lu Q, Zhang L, Chen T, Lu M, Ping T, Chen G (2008) Identification and quantitation of auxins in plants by liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Commun Mass Spectrom 22:2565–2572

    CAS  PubMed  Article  Google Scholar 

  93. Magnus V, Bandurski R, Schulze A (1980) Synthesis of 4,5,6,7 and 2,4,5,6,7 deuterium-labeled indole-3-acetic acid for use in mass spectrometric assays. Plant Physiol 66:775–781

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  94. Magnus V, Ozga JA, Reinecke DM, Pierson GL, Larue TA, Cohen JD, Brenner ML (1997) 4-chloroindole-3-acetic and indole-3-acetic acids in Pisum sativum. Phytochemistry 46:675–681

    CAS  Article  Google Scholar 

  95. Mancuso S, Marras A, Magnus V, Balusˇka F (2005) Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing micro-electrode. Anal Biochem 341:344–351

    CAS  PubMed  Article  Google Scholar 

  96. Marcussen J, Ulvskov P, Olsen C, Rajagopal R (1989) Preparation and properties of antibodies against indoleacetic acid (IAA)-C5-BSA, a novel ring-coupled IAA antigen, as compared to two other types of IAA-specific antibodies. Plant Physiol 89:1071–1078

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  97. Martin AJP (1964) The development of partition chromatography, Nobel Lecture, December 12, 1952. Nobel lectures, chemistry 1942–1962. Elsevier, Amsterdam, pp 359–371

    Google Scholar 

  98. Martin AJP, Synge RLM (1941) A new form of chromatography employing two liquid phases 1. A theory of chromatography, 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 35:1358–1368

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. Martin GC, Nishijima C, Labavitch JM (1980) Analysis of indoleacetic acid by the nitrogen-phosphorus detector gas chromatograph. J Am Soc Hortic Sci 105:46–50

    CAS  Google Scholar 

  100. McDougall J, Hillman J (1978a) Analysis of indole-3-acetic acid using GCMS techniques. In: Hillman J (ed) Isolation of plant growth substances. Cambridge University Press, Cambridge, pp 1–25

    Google Scholar 

  101. McDougall J, Hillman JR (1978b) Purification of IAA from shoot tissues 2: phaseolus vulgaris and its analysis by GC-MS. J Exp Bot 29:375–386

    CAS  Article  Google Scholar 

  102. McDougall J, Hillman JR (1979) Derivatives of indole-3-acetic-acid for SIM GC-MS studies. Z Pflanzenphysiol 98:89–93

    Article  Google Scholar 

  103. Meudt WJ, Bennett HW (1978) Rapid bioassay for auxin. Physiol Plant 44:422–428

    CAS  Article  Google Scholar 

  104. Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA (2009) Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta 229:1209–1217

    CAS  PubMed  Article  Google Scholar 

  105. Mitchell J, Livingston G (1968) Methods of studying plant hormones and growth-regulating substances, agriculture handbook No. 336. US Government Printing Office, Washington, DC

    Google Scholar 

  106. Nag S, Paul A, Choudhuri M (2013) Changes in peroxidase activity during adventitious root formation at the base of mung bean cuttings. Int J Sci Technol Res 2:171–177

    Article  Google Scholar 

  107. Nishio M, Zushi S, Ishii T, Furuya T, Syono K (1976) Studies in plant tissue cultures 27: mass fragmentographic determination of indole-3-acetic acid in callus tissues of Panax ginseng and Nicotiana tabacum. Chem Pharm Bull (Tokyo) 24:2038–2042

    CAS  Article  Google Scholar 

  108. Nonhebel H, Yuan Y, Al-Amier H, Pieck M, Akor E, Ahamed A, Cohen J, Celenza J, Normanly J (2011) Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry 72:37–48

    CAS  PubMed  Article  Google Scholar 

  109. Nordström AC, Jacobs FA, Efiasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861

    PubMed Central  PubMed  Article  Google Scholar 

  110. Novák O, Pénčík A, Ljung K (2014) Identification and profiling of auxin and auxin metabolites. In: Zažímalová E, Petrasek J, Benkova E (eds) Auxin and its role in plant development. Springer, Wien

    Google Scholar 

  111. Östin A, Moritz T, Sandberg G (1992) Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid. Biol Mass Spectrom 21:292–298

    Article  Google Scholar 

  112. Östin A, Catala C, Chamarro J, Sandberg G (1995) Identification of glucopyranosyl-β-1,4-glucopyranosyl-β-1-N-oxindole-3- acetyl-N-aspartic acid, a new IAA catabolite, by liquid chromatography/tandem mass spectrometry. J Mass Spectrom 30:1007–1017

    Article  Google Scholar 

  113. Park S, Cohen J, Slovin J (2006) Strawberry fruit protein with a novel indole-acyl modification. Planta 224:1015–1022

    CAS  PubMed  Article  Google Scholar 

  114. Park S, Ozga J, Cohen J, Reinecke D (2010) Evidence of 4-Cl-IAA- and IAA-bound to proteins in pea fruit and seeds. J Plant Growth Regul 29:184–193

    CAS  Article  Google Scholar 

  115. Pencík A, Simonovik B, Petersson S, Henyková E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazímalová E, Novák O, Sandberg G, Ljung K (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25:3858–3870

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  116. Pengelly W, Meins FJ (1977) A specific radioimmunoassay for nanogram quantities of the auxin, indole-3-acetic acid. Planta 136:173–180

    CAS  PubMed  Article  Google Scholar 

  117. Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Article  Google Scholar 

  118. Pilet PE, Rebeaud JE (1983) Effect of abscisic acid on growth and indolyl-3-acetic acid levels in maize roots. Plant Sci Lett 31:117–122

    CAS  Article  Google Scholar 

  119. Pilet P, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  120. Plieninger H, Müller W, Weinerth K (1964) thIndolo-α-pyrone und Indolo-α-pyridone. Chem Ber 97:667–681

    CAS  Article  Google Scholar 

  121. Porter S, Stoll D, Rutan S, Carr P, Cohen J (2006) Analysis of four-way two-dimensional liquid chromatography-diode array data: application to metabolomics. Anal Chem 78:5559–5569

    CAS  PubMed  Article  Google Scholar 

  122. Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  123. Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    CAS  PubMed  Article  Google Scholar 

  124. Rittenberg D, Foster G (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:737–744

    CAS  Google Scholar 

  125. Rivier L (1986) GC-MS of auxins. In: Linskens H, Jackson J (eds) Gas chromatography/mass spectrometry. Springer, Berlin, pp 146–188

    Chapter  Google Scholar 

  126. Rivier L, Pilet PE (1974) Indolyl-3-acetic acid in cap and apex of maize roots: identification and quantification by mass fragmentography. Planta 20:107–112

    Article  Google Scholar 

  127. Russell DH, Edmondson RD (1997) High-resolution mass spectrometry and accurate mass measurements with emphasis on the characterization of peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:263–276

    CAS  Article  Google Scholar 

  128. Sakairi M (1988) Characteristics of a liquid chromatograph/atmospheric pressure ionization mass spectrometer. Anal Chem 60:774–780

    CAS  Article  Google Scholar 

  129. Sandberg G (1984) Biosynthesis and metabolism of indole-3-ethanol and indole-3-acetic acid by Pinus sylvestris L. needles. Planta 161:398–403

    CAS  PubMed  Article  Google Scholar 

  130. Sasaki K, Sakai S, Kamada H, Harada H (1994) Identification of conjugated IAA in carrot crown gall as indole-3-acetylaspartic acid (IAAsp) by LC/MS. J Plant Growth Regul 13:183–186

    CAS  Article  Google Scholar 

  131. Savidge RA, Wareing PF (1982) Apparent auxin production and transport during winter in the non-growing pine tree. Can J Bot 60:681–691

    CAS  Article  Google Scholar 

  132. Schuch U, Azarenko A, Fuchigami L (1994) Endogenous IAA levels and development of coffee flower buds from dormancy to anthesis. J Plant Growth Regul 15:33–41

    CAS  Article  Google Scholar 

  133. Seeley S, Powell L (1974) Gas chromatography and detection of microquantities of gibberellins and indoleacetic acid as their fluorinated derivatives. Anal Biochem 58:39–46

    CAS  PubMed  Article  Google Scholar 

  134. Seiler N, Demisch L (1977) In: Blau K, King G (eds) Handbook of derivatives for chromatography. Heyden & Son, London, pp 346–383

    Google Scholar 

  135. Shi Y-F, Wang D-I, Wang C, Culler A, Kreiser M, Suresh J, Cohen J, Pan J, Baker B, Liu J-Z (2015) Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol Plant. doi:10.1016/j.molp.2015.04.008

    Google Scholar 

  136. Sitbon F, Östin A, Sundberg B, Olsson O, Sandberg G (1993) Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overproducing transgenic tobacco plants, and identification of the main conjugates by frit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol 101:313–320

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952

    CAS  Article  Google Scholar 

  138. Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899

    CAS  PubMed  Article  Google Scholar 

  139. Sorce C, Lombardi L, Giorgetti L, Parisi B, Ranalli P, Lorenzi R (2009) Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars. J Plant Physiol 166:1023–1033

    CAS  PubMed  Article  Google Scholar 

  140. Srivastava B (1963) Ether-soluble & ether-insoluble auxins from immature corn kernels. Plant Physiol 38:473–478

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  141. Staswick P, Serban B, Rowe M, Tiryaki I, Maldonado M, Maldonado M, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  142. Stoessl A, Venis M (1970) Determination of submicrogram levels of indole-3-acetic acid: a new, highly specific method. Anal Biochem 34:344–351

    CAS  PubMed  Article  Google Scholar 

  143. Stoll D, Cohen J, Carr P (2006) Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. J Chromatogr 1122:123–137

    CAS  Article  Google Scholar 

  144. Strnad M, Kamínek M (1985) Sensitized bean first internode bioassay for auxins and brassinosteroids. Biol Plant 27:209–215

    CAS  Article  Google Scholar 

  145. Sun B, Chen L, Xu Y, Liu M, Yin H, Ai S (2014) Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode. Biosen Bioelectron 51:164–169

    CAS  Article  Google Scholar 

  146. Sundberg B (1990) Influence of extraction solvent (buffer, methanol, acetone) and time on the quantification of indole-3-acetic acid in plants. Physiol Plant 78:293–297

    CAS  Article  Google Scholar 

  147. Sundberg B, Little CHA (1990) Tracheid production in response to changes in the internal level of indole-3-acetic acid in 1-year-old shoots of scots pine. Plant Physiol 94:1721–1727

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  148. Sutter EG, Cohen JD (1992) Measurement of indolebutyric acid in plant-tissues by isotope-dilution gas-chromatography mass-spectrometry analysis. Plant Physiol 99:1719–1722

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  149. Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  150. Sweetser P, Swartzfager D (1978) Indole-3-acetic acid levels of plant tissue as determined by a new high performance liquid chromatographic method. Plant Physiol 61:254–258

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  151. Takahashi N, Yamaguchi I, Kõno T, Igoshi M, Hirose K, Suzuki K (1975) Characterization of plant growth substances in Citrus unshiu and their change in fruit development. Plant Cell Physiol 16:1101–1111

    CAS  Google Scholar 

  152. Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  153. Thornburg RW, Li XY (1991) Wounding nicotiana-tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol 96:802–805

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  154. Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154:1957–1965

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  155. Tivendale ND, Davidson SE, Davies NW, Smith JA, Dalmais M, Bendahmane AI, Quittenden LJ, Sutton L, Bala RK, Le Signor C, Thompson R, Horne J, Reid JB, Ross JJ (2012) Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol 159:1055–1063

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  156. Turian G, Hamilton RH (1960) Isolation of 3-indolylacetic acid from Ustilago zeae tumors. Biochemica et Biophysica Acta 4:148–150

    Article  Google Scholar 

  157. Ueda M, Bandurski RS (1974) Structure of indole-3-acetic acid myoinositol esters and pentamethyl-myoinositols. Phytochemistry 13:243–253

    CAS  Article  Google Scholar 

  158. Veldstra H (1953) The relation of chemical structure to biological activity in growth substances. Annu Rev Plant Physiol 4:151–198

    Article  Google Scholar 

  159. Wang Q, Little CHA, Oden PC (1995) Effect of laterally applied gibberellin a(4/7) on cambial growth and the level of indole-3-acetic acid in Pinus sylvestris shoots. Physiol Plant 95:187–194

    CAS  Article  Google Scholar 

  160. Weiler E (1982) Plant hormone immunoassay. Physiol Plant 54:230–234

    CAS  Article  Google Scholar 

  161. Went FQ (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  162. Went FW (1942) Growth, auxin, and tropisms in decapitated Avena coleoptiles. Plant Physiol 17:236–249

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  163. Went FW (1985) This week’s citation classic: Went FW. Wuchsstoff und Wachstum. (Growth-substance and growth). Current Contents 19(2):19

  164. Wildman S, Muir R (1949) Observation on the mechanism of auxin formation in plant tissues. Plant Physiol 24:84–92

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  165. Wu T, Liang Y, Zhu X, Zhao M, Liu H (2014) Separation and quantification of four isomers of indole-3-Acetylmyo- inositol in plant tissues using high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Anal Bioanal Chem 406:3239–3247

    CAS  PubMed  Article  Google Scholar 

  166. Yamaki T (1950) A new method of auxin determination. Misc Rep Inst Nat Resour (Shigen Kagaku Kenkyusyo) 17(18):180–188

    Google Scholar 

  167. Yapwattanaphun C, Kobayashi S, Yonemori K, Ueda J (2014) Hormone analysis in the locule of mangosteen fruit during apomictic seed development. Acta Hortic 1024:141–146

    Article  Google Scholar 

  168. Yu J, Wen C (2013) Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. J Exp Biol 64:921–933

    CAS  Google Scholar 

  169. Yu P, Hegeman AD, Cohen JD (2014) A facile means for the identification of indolic compounds from plant tissues. Plant J 79:1065–1075

    CAS  PubMed  Article  Google Scholar 

  170. Zenk M (1961) 1-(Indole-3-acetyl)-β-d-glucose, a new compound in the metabolism of indole-3-acetic acid in plants. Nature 191:493–494

    CAS  PubMed  Article  Google Scholar 

  171. Zhou Y, Xu Z, Wang M, Meng X, Yin H (2013) Electrochemical immunoassay platform for high sensitivity detection of indole-3-Acetic acid. Electrochim Acta 96:66–73

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was funded by the National Science Foundation (MCB-0725149, IOS-0923960, MCB1203438, IOS-1238812), the Minnesota Agricultural Experiment Station, and the Gordon and Margaret Bailey Endowment for Environmental Horticulture. We thank John J. Ross and James B. Reid for viewing the manuscript and Qian Tang for translation assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Tivendale.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tivendale, N.D., Cohen, J.D. Analytical History of Auxin. J Plant Growth Regul 34, 708–722 (2015). https://doi.org/10.1007/s00344-015-9519-4

Download citation

Keywords

  • Auxin
  • Indole-3-acetic acid
  • GC–MS
  • LC–MS
  • Bioassay
  • Isotope dilution