Skip to main content
Log in

Analytical History of Auxin

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Auxins are a group of naturally occurring phytohormones that have numerous functions in plant growth and development. The identification and quantification of these hormones from plant tissues has a long and varied history, dating back as far as the mid-19th century. The evolution of auxin analysis closely mirrors the evolution of analytical chemistry. However, despite the fact that the methods for auxin determination have evolved since the initial bioassays, few of the techniques developed over the years have been completely abandoned, and many of them are still used in routine auxin analyses today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abel S, Theologis A (2010) Odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Abian J (1999) The coupling of gas and liquid chromatography with mass spectrometry. J Mass Spectrom 34:157–168

    Article  CAS  Google Scholar 

  • Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM (2012) A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specific YUCCA. Physiol Plant 146:487–499

    Article  CAS  PubMed  Google Scholar 

  • Allen JRF, Baker DA (1980) Free tryptophan and indole-3-acetic acid levels in the leaves and vascular pathways of Ricinus communis L. Planta 148:69–74

    Article  CAS  PubMed  Google Scholar 

  • Allen JRF, Rivier L, Pilet PE (1982) Quantification of indol-3-yl acetic acid in pea and maize seedlings by gas chromatography-mass spectrometry. Phytochemistry 21:525–530

    Article  CAS  Google Scholar 

  • Alwan Al-Delaimy A (2013) Effect of mineral acids on rooting response of aging mung bean (Phaseolus aureus Roxb.) cuttings via indole acetic acid level. J Agric Sci Technol A3:455–464

    Google Scholar 

  • Andersson B, Sandberg G (1982) Identification of endogenous N-(3-indoleacetyl)aspartic acid in scots pine (Pinus sylvestris L.) by combined gas chromatography-mass spectrometry, using high-performance liquid chromatography for quantification. J Chromatogr 238:151–156

    Article  CAS  Google Scholar 

  • Audus LI (1972) Plant growth substances, chemistry and physiology, vol I. Leonard Hill, London

    Google Scholar 

  • Avery G, Berger J, Shalucha B (1941) The total extraction of free auxin and auxin precursor from plant tissue. Am J Bot 28:596–597

    Article  CAS  Google Scholar 

  • Bandurski R, Schulze A (1974) Concentrations of indole-3-acetic acid and its esters in Avena and Zea. Plant Physiol 54:257–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bandurski R, Schulze A, Cohen J (1977) Photo regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun 79:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Bargmann B, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann D, Estelle M, Birnbaum K (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barkawi LS, Tam YY, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, Cohen JD (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177–188

    Article  CAS  PubMed  Google Scholar 

  • Bennet-Clark T, Ball N (1951) The diageotropic behaviour of rhizomes. J Exp Bot 2:169–203

    Article  Google Scholar 

  • Bennet-Clark TA, Kefford NP (1953) Chromatography of the growth substances in plant extracts. Nature (London) 171:645–649

    Article  CAS  Google Scholar 

  • Berger J, Avery GS Jr (1944) Isolation of an auxin precursor and an auxin (Indoleacetic Acid) from maize. Am J Bot 31:199–203

  • Bialek K, Meudt W, Cohen J (1983) Indole-3-acetic acid (IAA) and IAA conjugates applied to bean stem sections: IAA content and the growth response. Plant Physiol 73:130–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bittner S, Even-Chen Z (1975) A GLC procedure for determining sub-nanogram levels of indol-3-yl acetic acid. Phytochemistry 14:2455–2457

    Article  CAS  Google Scholar 

  • Boerjan W, Genetello C, Van Montagu M, Inze D (1992) A new bioassay for auxins and cytokinins. Plant Physiol 99:1090–1098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Böttcher C, Boss PK, Davies C (2011) Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development. J Exp Bot 62:4267–4280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Böttger M, Engvild K, Kaiser P (1978) Response of substituted indoleacetic acids in the indolo-α-pyrone fluorescence determination. Physiol Plant 43:62–64

    Article  Google Scholar 

  • Boysen-Jensen P, Avery GJ, Burkholder P (1936) Growth hormones in plants. McGraw-Hill, New York

    Google Scholar 

  • Brook JL, Biggs RH, St. John PA, Anthony DS (1967) Gas chromatography of several indole derivatives. Anal Biochem 18:453–458

    Article  CAS  Google Scholar 

  • Bruins AP (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59:2642–2646

    Article  CAS  Google Scholar 

  • Brunoud G, Wells D, Oliva M, Larrieu A, Mirabet V, Burrow A, Beeckman T, Kepinski S, Traas J, Bennett M, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106

    Article  CAS  PubMed  Google Scholar 

  • Caruso JL, Zeisler CS (1983) Indole-3-acetic acid in Douglas fir seedlings: a reappraisal. Phytochemistry 22:589–590

    Article  CAS  Google Scholar 

  • Caruso J, Smith R, Smith L, Cheng T-Y, Daves G Jr (1978) Determination of indole-3-acetic acid in Douglas fir using a deuterated analog and selected ion monitoring: comparison of microquantities in seedling and adult tree. Plant Physiol 62:841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chamarro J, Östin A, Sandberg G (2001) Metabolism of indole-3-acetic acid by orange (Citrus sinensis) flavedo tissue during fruit development. Phytochemistry 57:179–187

    Article  CAS  PubMed  Google Scholar 

  • Chen KH, Miller A, Patterson G, Cohen J (1988) A rapid and simple procedure for purification of indole 3 acetic acid prior to GC SIM MS analysis. Plant Physiol 86:822–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Q, Zhang B, Hicks LM, Wang S, Jez JM (2009) A liquid chromatography-tandem mass spectrometry-based assay for indole-3-acetic acid-amido synthetase. Anal Biochem 390:149–154

    Article  CAS  PubMed  Google Scholar 

  • Ciesielski T (1872) Untersuchungen über die Abwärtskrü mmung der Wurzel. Beitr Biol Pflanzen 1:1–30

    Google Scholar 

  • Cohen J, Bandurski R (1978) The bound auxins: protection of indole-3-acetic acid from peroxidase catalyzed oxidation. Planta 139:203–208

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Schulze A (1981) Double-standard isotope dilution assay. I. Quantitative assay of indole-3-acetic acid. Anal Biochem 112:249–257

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Baldi B, Slovin JP (1986) 13C6-[benzene ring]-indole-3-acetic acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic acid in plants. Plant Physiol 80:14–19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen J, Bausher M, Bialek K, Buta J, Pharis R, Reed A, Slovin J (1987) Comparison of a commercial ELISA assay for indole-3-acetic acid and analysis by gas chromatography selected ion monitoring mass spectrometry using a 13C6-labeled internal standard. Plant Physiol 84:982–986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

    Article  PubMed  Google Scholar 

  • Crozier A, Loferski K, Zaerr JB, Morris RO (1980) Analysis of picogram quantities of indole-3-acetic acid by high performance liquid chromatography-fluorescence procedures. Planta 150:366–370

    Article  CAS  PubMed  Google Scholar 

  • Darwin C, Darwin F (1881) The Power of movement in plants. Appleton and Company, New York

    Google Scholar 

  • Davies NW, Smith JA, Molesworth PP, Ross JJ (2010) Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 24:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • De Condolle A-P (1832) Physiologie végétale. Bechut Jeune, Paris

    Google Scholar 

  • DeYoe D, Zaerr J (1976) Analysis by gas-liquid chromatography and mass spectrometry. Plant Physiol 58:299–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diopan V, Adam V, Havel L, Rene Kizek G (2009) Phytohormones as important biologically active molecules their simple simultaneous detection. Molecules 14:1825–1839

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Havlicek L, Vagner M, Malbeck J, Kaminek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr 1075:159–166

    Article  CAS  Google Scholar 

  • Dole M, Mach L, Hines R, Mobley R, Ferguson L, Alice M (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  CAS  Google Scholar 

  • Ehmann A (1977) The van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 132:267–276

    Article  CAS  PubMed  Google Scholar 

  • Eliasson L, Stromquist L-H, Tillberg EPP (1976) Reliability of the indole-α-pyrone fluorescence method for indole-3-acetic acid determination in crude plant extracts. Physiol Plant 36:16–19

    Article  CAS  Google Scholar 

  • Elliott MC, Greenwood MS (1974) Indol-3yl-acetic acid in roots of Zea mays. Phytochemistry 13:239–241

    Article  CAS  Google Scholar 

  • Epstein E, Cohen J (1981) Microscale preparation of pentafluorobenzyl esters: electron capture gas chromatographic detection of indole-3-acetic acid from plants. J Chromatogr 209:413–420

    Article  CAS  Google Scholar 

  • Epstein E, Cohen J, Bandurski R (1980) Concentration and metabolic turnover of indoles in germinating kernels of Zea mays L. Plant Physiol 65:415–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  • Fenn JB (2002) Electrospray ionization mass spectrometry: how it all began. J Biomol Tech 13:101–118

    PubMed Central  PubMed  Google Scholar 

  • Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O (2014) UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105:147–157

    Article  PubMed  CAS  Google Scholar 

  • Fuchs S, Haimovich J, Fuchs Y (1971) Immunological studies of plant hormones: detection and estimation by immunological assays. Eur J Biochem 18:384–390

    Article  CAS  PubMed  Google Scholar 

  • Fukui H, Devries J, Wittwer S, Sell H (1957) Ethyl-3-indole- acetate: an artefact in extracts of immature corn kernels. Nature 180:1205

    Article  CAS  Google Scholar 

  • Gohlke R, McLafferty F (1993) Early gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 4:367–371

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt E, Goren R, Monselise S, Takahashi N, Igoshi H, Yamaguchi I, Hirose K (1971) Auxins in citrus: a reappraisal. Science 174:1256–1257

    Article  CAS  PubMed  Google Scholar 

  • Gorter C (1932) Groeistofproblemen bij Wortels, Utrecht

  • Grayson M (ed) (2002) Measuring mass: from positive rays to proteins. Chemical Heritage Foundation, Philadelphia

    Google Scholar 

  • Gyulai G, Kiss J, Jekkel Z, Kiss E, Heszky L (1995) A selective auxin and cytokinin bioassay based on root and shoot formation in vitro. J Plant Physiol 145:379–382

    Article  CAS  Google Scholar 

  • Hagen G, Martin G, Li Y, Guilfoyle T (1991) Auxin-induced expression of the soybean GH3 promotor in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  CAS  PubMed  Google Scholar 

  • Hahn O (1923) On uranium Z and its parent. Z Phys Chem 103:180–461

    Google Scholar 

  • Hall PJ (1980) Indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry 19:2121–2123

    Article  CAS  Google Scholar 

  • Hamilton R, Bandurski R, Grigsby B (1961) Isolation of indole-3-acetic acid from corn kernels & etiolated corn seedlings. Plant Physiol 36:354–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemberg T (1958) Auxins and growth-inhibiting substances in maize kernels. Physiol Plant 11:284–311

    Article  CAS  Google Scholar 

  • Hevesy G, Hofer E (1934) Elimination of water from the human body. Nature 134:879

    Article  Google Scholar 

  • Holmes JC, Morrell FA (1957) Oscillographic mass-spectrometric monitoring of gas chromatography. Appl Spectrosc 11:86–87

    Article  CAS  Google Scholar 

  • Hunter W (1986) High-performance gas chromatographic method for the estimation of the indole-3-acetic acid content of plant materials. J Chromatogr 362:430–435

    Article  CAS  Google Scholar 

  • Iino M, Carr D (1982) Estimation of free, conjugated, and diffusible indole-3-acetic acid in etiolated maize shoots by the indolo-a-pyrone fluorescence method. Plant Physiol 69:950–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ilić N, Habus I, Barkawi L, Park S, Stefanic Z, Kojic-Prodic B, Cohen J, Magnus V (2005) Aminoethyl-substituted indole-3-acetic acids for the preparation of tagged and carrier-linked auxin. Bioorg Med Chem Lett 13:3229–3240

    Article  CAS  Google Scholar 

  • Ito Y, Takeuchi T, Ishii D, Goto M (1985) Direct coupling of micro high-performance liquid chromatography with fast atom bombardment mass spectrometry. J Chromatogr 346:161–166

    Article  CAS  Google Scholar 

  • James AT, Martin AJP (1952) Gas-liquid partition chromatography. A technique for the analysis of volatile materials. Analyst 77:915–931

    Article  CAS  Google Scholar 

  • James AT, Martin AJP (1954) Gas-liquid chromatography: a technique for the analysis and identification of volatile materials. Br Med Bull 10:170–176

    CAS  PubMed  Google Scholar 

  • Jepson J (1958) Indolylacetamide: a chromatographic artifact from the natural indoles, indolyl-acetylglucosiduronic acid and indolylpyruvic acid. Biochem J 69:22P

    Article  CAS  Google Scholar 

  • Jerchel D, Müller R (1950) Papierchromatographie der β-Indolylessigsäure. Naturwiss 38:561–562

    Article  Google Scholar 

  • Julliard J, Sotta B, Pelletier G, Miginiac E (1992) Enhancement of naphthaleneacetic acid-induced rhizogenesis in TL-DNA-transformed Brassica napus without significant modification of auxin levels and auxin sensitivity. Plant Physiol 100:1277–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khalifah RA, Lewis LN, Coggins CW, Radlick PC (1965) Fluorometric, chromatographic, and spectronic evidence for the non-indolic nature of Citrus auxin. J Exp Bot 16:511–517

    Article  CAS  Google Scholar 

  • Kögl F, Kostermans D (1934) Hetero-auxin als Stoffwechselprodukt niederer pflanzlicher Organismen XIII. Isolierung aus Hefe. Zeitschrift fur Physikalische Chemie 228:113–121

    Article  Google Scholar 

  • Kögl F, Hagen-Smit J, Erxleben H (1934) Über ein neues Auxin (“Hetero-Auxin”) aus Harn. Hoppe-Seyler’s Z. Physiol Chem 228:104–112

    Article  Google Scholar 

  • Kojima K, Ohtake E, Yu Z (2002) Distribution and transport of IAA in tomato plants. J Plant Growth Regul 37:249–254

    Article  CAS  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K, Sakakibara H (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kondo S, Hayata Y, Iwasaki N (2000) Effects of indole-3-acetic acid and gibberellins on fruit development and maturation of sweet cherries. Acta Hortic 514:75–82

    Article  CAS  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in arabidopsis. Plant Physiol 127:1845–1853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leopold C (1967) Auxins and plant growth. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  • Li X, La Motte CE, Stewart CR, Cloud NP, Wear-Bagnall S, Jiang CZ (1992) Determination of IAA and ABA in the same plant sample by a widely applicable method using GC-MS with selected ion monitoring. J Plant Growth Regul 11:55–65

    Article  Google Scholar 

  • Li W, Zhou Y, Liu X, Yu P, Cohen J, Meyerowitz E (2013) Flower development master regulator LEAFY controls auxin response pathways in floral primordia formation. Sci Signal 6:ra23

    PubMed Central  PubMed  Google Scholar 

  • Liang Y, Zhu X, Wu T, Zhao M, Liu H (2012) Rapid and sensitive detection of auxins and flavonoids in plant samples by high-performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 35:2559–2566

    Article  CAS  PubMed  Google Scholar 

  • Liao CY, Smet W, Brunoud G, Yoshida S, Vernoux T, Weijers D (2015) Reporters for sensitive and quantitative measurement of auxin response. Nat Methods 12:207–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linskens H, Jackson J (eds) (1985) Gas chromatography/mass spectrometry, modern methods of plant analysis, vol 3. Springer, New York

    Google Scholar 

  • Little J (1999) Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. J Chromatogr 844:1–22

    Article  CAS  Google Scholar 

  • Liu Z-B, Ulmasov T, Shi X, Hagen G, Guilfoyle T (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X, Hegeman A, Gardner G, Cohen J (2012) Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Q, Zhang L, Chen T, Lu M, Ping T, Chen G (2008) Identification and quantitation of auxins in plants by liquid chromatography/electrospray ionization ion trap mass spectrometry. Rapid Commun Mass Spectrom 22:2565–2572

    Article  CAS  PubMed  Google Scholar 

  • Magnus V, Bandurski R, Schulze A (1980) Synthesis of 4,5,6,7 and 2,4,5,6,7 deuterium-labeled indole-3-acetic acid for use in mass spectrometric assays. Plant Physiol 66:775–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magnus V, Ozga JA, Reinecke DM, Pierson GL, Larue TA, Cohen JD, Brenner ML (1997) 4-chloroindole-3-acetic and indole-3-acetic acids in Pisum sativum. Phytochemistry 46:675–681

    Article  CAS  Google Scholar 

  • Mancuso S, Marras A, Magnus V, Balusˇka F (2005) Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing micro-electrode. Anal Biochem 341:344–351

    Article  CAS  PubMed  Google Scholar 

  • Marcussen J, Ulvskov P, Olsen C, Rajagopal R (1989) Preparation and properties of antibodies against indoleacetic acid (IAA)-C5-BSA, a novel ring-coupled IAA antigen, as compared to two other types of IAA-specific antibodies. Plant Physiol 89:1071–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin AJP (1964) The development of partition chromatography, Nobel Lecture, December 12, 1952. Nobel lectures, chemistry 1942–1962. Elsevier, Amsterdam, pp 359–371

    Google Scholar 

  • Martin AJP, Synge RLM (1941) A new form of chromatography employing two liquid phases 1. A theory of chromatography, 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J 35:1358–1368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin GC, Nishijima C, Labavitch JM (1980) Analysis of indoleacetic acid by the nitrogen-phosphorus detector gas chromatograph. J Am Soc Hortic Sci 105:46–50

    CAS  Google Scholar 

  • McDougall J, Hillman J (1978a) Analysis of indole-3-acetic acid using GCMS techniques. In: Hillman J (ed) Isolation of plant growth substances. Cambridge University Press, Cambridge, pp 1–25

    Google Scholar 

  • McDougall J, Hillman JR (1978b) Purification of IAA from shoot tissues 2: phaseolus vulgaris and its analysis by GC-MS. J Exp Bot 29:375–386

    Article  CAS  Google Scholar 

  • McDougall J, Hillman JR (1979) Derivatives of indole-3-acetic-acid for SIM GC-MS studies. Z Pflanzenphysiol 98:89–93

    Article  Google Scholar 

  • Meudt WJ, Bennett HW (1978) Rapid bioassay for auxin. Physiol Plant 44:422–428

    Article  CAS  Google Scholar 

  • Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA (2009) Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2. Planta 229:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Mitchell J, Livingston G (1968) Methods of studying plant hormones and growth-regulating substances, agriculture handbook No. 336. US Government Printing Office, Washington, DC

    Google Scholar 

  • Nag S, Paul A, Choudhuri M (2013) Changes in peroxidase activity during adventitious root formation at the base of mung bean cuttings. Int J Sci Technol Res 2:171–177

    Article  Google Scholar 

  • Nishio M, Zushi S, Ishii T, Furuya T, Syono K (1976) Studies in plant tissue cultures 27: mass fragmentographic determination of indole-3-acetic acid in callus tissues of Panax ginseng and Nicotiana tabacum. Chem Pharm Bull (Tokyo) 24:2038–2042

    Article  CAS  Google Scholar 

  • Nonhebel H, Yuan Y, Al-Amier H, Pieck M, Akor E, Ahamed A, Cohen J, Celenza J, Normanly J (2011) Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry 72:37–48

    Article  CAS  PubMed  Google Scholar 

  • Nordström AC, Jacobs FA, Efiasson L (1991) Effect of exogenous indole-3-acetic acid and indole-3-butyric acid on internal levels of the respective auxins and their conjugation with aspartic acid during adventitious root formation in pea cuttings. Plant Physiol 96:856–861

    Article  PubMed Central  PubMed  Google Scholar 

  • Novák O, Pénčík A, Ljung K (2014) Identification and profiling of auxin and auxin metabolites. In: Zažímalová E, Petrasek J, Benkova E (eds) Auxin and its role in plant development. Springer, Wien

    Google Scholar 

  • Östin A, Moritz T, Sandberg G (1992) Liquid chromatography/mass spectrometry of conjugates and oxidative metabolites of indole-3-acetic acid. Biol Mass Spectrom 21:292–298

    Article  Google Scholar 

  • Östin A, Catala C, Chamarro J, Sandberg G (1995) Identification of glucopyranosyl-β-1,4-glucopyranosyl-β-1-N-oxindole-3- acetyl-N-aspartic acid, a new IAA catabolite, by liquid chromatography/tandem mass spectrometry. J Mass Spectrom 30:1007–1017

    Article  Google Scholar 

  • Park S, Cohen J, Slovin J (2006) Strawberry fruit protein with a novel indole-acyl modification. Planta 224:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Park S, Ozga J, Cohen J, Reinecke D (2010) Evidence of 4-Cl-IAA- and IAA-bound to proteins in pea fruit and seeds. J Plant Growth Regul 29:184–193

    Article  CAS  Google Scholar 

  • Pencík A, Simonovik B, Petersson S, Henyková E, Simon S, Greenham K, Zhang Y, Kowalczyk M, Estelle M, Zazímalová E, Novák O, Sandberg G, Ljung K (2013) Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell 25:3858–3870

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pengelly W, Meins FJ (1977) A specific radioimmunoassay for nanogram quantities of the auxin, indole-3-acetic acid. Planta 136:173–180

    Article  CAS  PubMed  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Pilet PE, Rebeaud JE (1983) Effect of abscisic acid on growth and indolyl-3-acetic acid levels in maize roots. Plant Sci Lett 31:117–122

    Article  CAS  Google Scholar 

  • Pilet P, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plieninger H, Müller W, Weinerth K (1964) thIndolo-α-pyrone und Indolo-α-pyridone. Chem Ber 97:667–681

    Article  CAS  Google Scholar 

  • Porter S, Stoll D, Rutan S, Carr P, Cohen J (2006) Analysis of four-way two-dimensional liquid chromatography-diode array data: application to metabolomics. Anal Chem 78:5559–5569

    Article  CAS  PubMed  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA, Molesworth PP, Tivendale ND, Ross JJ (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Redig P, Shaul O, Inzé D, Van Montagu M, Van Onckelen H (1996) Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett 391:175–180

    Article  CAS  PubMed  Google Scholar 

  • Rittenberg D, Foster G (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:737–744

    CAS  Google Scholar 

  • Rivier L (1986) GC-MS of auxins. In: Linskens H, Jackson J (eds) Gas chromatography/mass spectrometry. Springer, Berlin, pp 146–188

    Chapter  Google Scholar 

  • Rivier L, Pilet PE (1974) Indolyl-3-acetic acid in cap and apex of maize roots: identification and quantification by mass fragmentography. Planta 20:107–112

    Article  Google Scholar 

  • Russell DH, Edmondson RD (1997) High-resolution mass spectrometry and accurate mass measurements with emphasis on the characterization of peptides and proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 32:263–276

    Article  CAS  Google Scholar 

  • Sakairi M (1988) Characteristics of a liquid chromatograph/atmospheric pressure ionization mass spectrometer. Anal Chem 60:774–780

    Article  CAS  Google Scholar 

  • Sandberg G (1984) Biosynthesis and metabolism of indole-3-ethanol and indole-3-acetic acid by Pinus sylvestris L. needles. Planta 161:398–403

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Sakai S, Kamada H, Harada H (1994) Identification of conjugated IAA in carrot crown gall as indole-3-acetylaspartic acid (IAAsp) by LC/MS. J Plant Growth Regul 13:183–186

    Article  CAS  Google Scholar 

  • Savidge RA, Wareing PF (1982) Apparent auxin production and transport during winter in the non-growing pine tree. Can J Bot 60:681–691

    Article  CAS  Google Scholar 

  • Schuch U, Azarenko A, Fuchigami L (1994) Endogenous IAA levels and development of coffee flower buds from dormancy to anthesis. J Plant Growth Regul 15:33–41

    Article  CAS  Google Scholar 

  • Seeley S, Powell L (1974) Gas chromatography and detection of microquantities of gibberellins and indoleacetic acid as their fluorinated derivatives. Anal Biochem 58:39–46

    Article  CAS  PubMed  Google Scholar 

  • Seiler N, Demisch L (1977) In: Blau K, King G (eds) Handbook of derivatives for chromatography. Heyden & Son, London, pp 346–383

    Google Scholar 

  • Shi Y-F, Wang D-I, Wang C, Culler A, Kreiser M, Suresh J, Cohen J, Pan J, Baker B, Liu J-Z (2015) Loss of GSNOR1 function leads to compromised auxin signaling and polar auxin transport. Mol Plant. doi:10.1016/j.molp.2015.04.008

    Google Scholar 

  • Sitbon F, Östin A, Sundberg B, Olsson O, Sandberg G (1993) Conjugation of indole-3-acetic acid (IAA) in wild-type and IAA-overproducing transgenic tobacco plants, and identification of the main conjugates by frit-fast atom bombardment liquid chromatography-mass spectrometry. Plant Physiol 101:313–320

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952

    Article  CAS  Google Scholar 

  • Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 62:882–899

    Article  CAS  PubMed  Google Scholar 

  • Sorce C, Lombardi L, Giorgetti L, Parisi B, Ranalli P, Lorenzi R (2009) Indoleacetic acid concentration and metabolism changes during bud development in tubers of two potato (Solanum tuberosum) cultivars. J Plant Physiol 166:1023–1033

    Article  CAS  PubMed  Google Scholar 

  • Srivastava B (1963) Ether-soluble & ether-insoluble auxins from immature corn kernels. Plant Physiol 38:473–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staswick P, Serban B, Rowe M, Tiryaki I, Maldonado M, Maldonado M, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stoessl A, Venis M (1970) Determination of submicrogram levels of indole-3-acetic acid: a new, highly specific method. Anal Biochem 34:344–351

    Article  CAS  PubMed  Google Scholar 

  • Stoll D, Cohen J, Carr P (2006) Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. J Chromatogr 1122:123–137

    Article  CAS  Google Scholar 

  • Strnad M, Kamínek M (1985) Sensitized bean first internode bioassay for auxins and brassinosteroids. Biol Plant 27:209–215

    Article  CAS  Google Scholar 

  • Sun B, Chen L, Xu Y, Liu M, Yin H, Ai S (2014) Ultrasensitive photoelectrochemical immunoassay of indole-3-acetic acid based on the MPA modified CdS/RGO nanocomposites decorated ITO electrode. Biosen Bioelectron 51:164–169

    Article  CAS  Google Scholar 

  • Sundberg B (1990) Influence of extraction solvent (buffer, methanol, acetone) and time on the quantification of indole-3-acetic acid in plants. Physiol Plant 78:293–297

    Article  CAS  Google Scholar 

  • Sundberg B, Little CHA (1990) Tracheid production in response to changes in the internal level of indole-3-acetic acid in 1-year-old shoots of scots pine. Plant Physiol 94:1721–1727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sutter EG, Cohen JD (1992) Measurement of indolebutyric acid in plant-tissues by isotope-dilution gas-chromatography mass-spectrometry analysis. Plant Physiol 99:1719–1722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sweetser P, Swartzfager D (1978) Indole-3-acetic acid levels of plant tissue as determined by a new high performance liquid chromatographic method. Plant Physiol 61:254–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi N, Yamaguchi I, Kõno T, Igoshi M, Hirose K, Suzuki K (1975) Characterization of plant growth substances in Citrus unshiu and their change in fruit development. Plant Cell Physiol 16:1101–1111

    CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thornburg RW, Li XY (1991) Wounding nicotiana-tabacum leaves causes a decline in endogenous indole-3-acetic acid. Plant Physiol 96:802–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP, Davidson SE, Smith JA, Lowe EK, Reid JB, Ross JJ (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154:1957–1965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davidson SE, Davies NW, Smith JA, Dalmais M, Bendahmane AI, Quittenden LJ, Sutton L, Bala RK, Le Signor C, Thompson R, Horne J, Reid JB, Ross JJ (2012) Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol 159:1055–1063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turian G, Hamilton RH (1960) Isolation of 3-indolylacetic acid from Ustilago zeae tumors. Biochemica et Biophysica Acta 4:148–150

    Article  Google Scholar 

  • Ueda M, Bandurski RS (1974) Structure of indole-3-acetic acid myoinositol esters and pentamethyl-myoinositols. Phytochemistry 13:243–253

    Article  CAS  Google Scholar 

  • Veldstra H (1953) The relation of chemical structure to biological activity in growth substances. Annu Rev Plant Physiol 4:151–198

    Article  Google Scholar 

  • Wang Q, Little CHA, Oden PC (1995) Effect of laterally applied gibberellin a(4/7) on cambial growth and the level of indole-3-acetic acid in Pinus sylvestris shoots. Physiol Plant 95:187–194

    Article  CAS  Google Scholar 

  • Weiler E (1982) Plant hormone immunoassay. Physiol Plant 54:230–234

    Article  CAS  Google Scholar 

  • Went FQ (1928) Wuchsstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  • Went FW (1942) Growth, auxin, and tropisms in decapitated Avena coleoptiles. Plant Physiol 17:236–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Went FW (1985) This week’s citation classic: Went FW. Wuchsstoff und Wachstum. (Growth-substance and growth). Current Contents 19(2):19

  • Wildman S, Muir R (1949) Observation on the mechanism of auxin formation in plant tissues. Plant Physiol 24:84–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu T, Liang Y, Zhu X, Zhao M, Liu H (2014) Separation and quantification of four isomers of indole-3-Acetylmyo- inositol in plant tissues using high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Anal Bioanal Chem 406:3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Yamaki T (1950) A new method of auxin determination. Misc Rep Inst Nat Resour (Shigen Kagaku Kenkyusyo) 17(18):180–188

    Google Scholar 

  • Yapwattanaphun C, Kobayashi S, Yonemori K, Ueda J (2014) Hormone analysis in the locule of mangosteen fruit during apomictic seed development. Acta Hortic 1024:141–146

    Article  Google Scholar 

  • Yu J, Wen C (2013) Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. J Exp Biol 64:921–933

    CAS  Google Scholar 

  • Yu P, Hegeman AD, Cohen JD (2014) A facile means for the identification of indolic compounds from plant tissues. Plant J 79:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Zenk M (1961) 1-(Indole-3-acetyl)-β-d-glucose, a new compound in the metabolism of indole-3-acetic acid in plants. Nature 191:493–494

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Xu Z, Wang M, Meng X, Yin H (2013) Electrochemical immunoassay platform for high sensitivity detection of indole-3-Acetic acid. Electrochim Acta 96:66–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory was funded by the National Science Foundation (MCB-0725149, IOS-0923960, MCB1203438, IOS-1238812), the Minnesota Agricultural Experiment Station, and the Gordon and Margaret Bailey Endowment for Environmental Horticulture. We thank John J. Ross and James B. Reid for viewing the manuscript and Qian Tang for translation assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Tivendale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tivendale, N.D., Cohen, J.D. Analytical History of Auxin. J Plant Growth Regul 34, 708–722 (2015). https://doi.org/10.1007/s00344-015-9519-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-015-9519-4

Keywords

Navigation